论文

利用大涡模式模拟黄土高原地区对流边界层特征

  • 李雪洮 ,
  • 梁捷宁 ,
  • 郭琪 ,
  • 徐丽丽 ,
  • 张镭
展开
  • <sup>1.</sup>半干旱气候变化教育部重点实验室, 兰州大学大气科学学院, 甘肃 兰州 730000;<sup>2.</sup>新疆维吾尔自治区气候中心, 新疆 乌鲁木齐 830002

收稿日期: 2019-02-25

  网络出版日期: 2020-06-28

基金资助

国家自然科学基金项目(41475008)

Simulate of Convective Boundary Layer Characteristics in the Loess Plateau by WRF Large-Eddy

  • Xuetao LI ,
  • Jiening LIANG ,
  • Qi GUO ,
  • Lili XU ,
  • Lei ZHANG
Expand
  • <sup>1.</sup>Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, Gansu, China;<sup>2.</sup>Xinjiang Uygur Autonomous Region Climate Center, Urumqi 830002, Xinjiang, China

Received date: 2019-02-25

  Online published: 2020-06-28

摘要

边界层湍流所引起各物理量的垂直输送在大气过程中起着重要作用。研究对流边界层特征对分析污染物扩散条件, 认识陆气间物质、 能量的输送交换机制和提高数值模式模拟能力具有重要意义。受限于目前许多地区通量观测站较少、 资料时空分辨率较低, 为了研究黄土高原地区大气边界层结构及其特征, 将中尺度气象模式WRF(The Weather Research and Forecasting Model)与大涡模式WRF Large-Eddy Simulation(WRF-LES)嵌套使用, 分析了黄土高原夏季温湿廓线情形下, 由热力驱动的边界层结构特征。结果表明: (1)WRF-LES模拟的地面风温场能较好地显示边界层典型湍流结构, 其他气象要素的模拟结果也比较符合边界层实际。(2)混合层顶所在的1000 m高度处垂直湍流强度最大, 强夹卷作用导致湍涡尺度减小且涡旋数量增多。(3)在模拟区选定的参数化方案下, 采用夏季实际粗糙度0.062 m替换模式默认值0.1 m, 发现使用实际粗糙度的模拟温度较之前低0.4 K, 与模拟区中心处的观测数据更接近, 说明采用合理的粗糙度对提高WRF-LES模拟效果有重要作用。

本文引用格式

李雪洮 , 梁捷宁 , 郭琪 , 徐丽丽 , 张镭 . 利用大涡模式模拟黄土高原地区对流边界层特征[J]. 高原气象, 2020 , 39(3) : 523 -531 . DOI: 10.7522/j.issn.1000-0534.2019.00050.

Abstract

The vertical transport of physical quantities caused by atmospheric turbulence plays an important role in the atmospheric process.Studying the characteristics of the convective boundary layer is of great significance for analyzing the diffusion conditions of pollutants, understanding the exchange mechanism of materials and energy between land and air, and improving the ability of numerical model simulation.Due to the limited number of flux observation stations and low spatial-temporal resolution in many regions, in order to study the structure and characteristics of the atmospheric boundary layer in the Loess Plateau, the Weather Research and Forecasting Model (WRF) and the WRF Large-Eddy Simulation (WRF-LES) are nested.The characteristics of the boundary layer structure driven by heat under the condition of summer temperature and humidity on the Loess Plateau were analyzed.The results show that: (1) The surface wind field and temperature field simulated by WRF-LES can display the typical turbulent structure of the boundary layer well, and the simulation results of other meteorological elements also conform to the boundary layer law.(2) The vertical turbulence intensity is the highest at the height of 1000 m where the top of the mixed layer is located.The strong entrainment results in a reduction in the scale of the turbulence and an increase in the number of vortices.(3) Under the parameterization scheme selected in the simulation area, the default value of 0.1 m is replaced by the actual roughness in summer of 0.062 m.It is found that the simulated temperature using the actual roughness is 0.4 K lower than before, which is closer to the observed data in the center of the simulated area, indicating that the reasonable roughness is important to improve the simulation of WRF-LES.

参考文献

[1]Cai X H, Zhang R, Yan L, 2006.A large-eddy simulation and Lagrangian stochastic study of heavy particle dispersion in the convective boundary layer[J].Boundary-Layer Meteorology, 120(3): 413-435.DOI: 10.1007/s10546-006-9061-9.
[2]Cai X H, Leclerc M Y, 2007.Forward-in-time and backward-in-time dispersion in the convective boundary layer: The concentration footprint[J].Boundary-Layer Meteorology, 123(2): 201-218.DOI: 10.1007/s10546-006-9141-x.
[3]Cécé R, Bernard D, Brioude J, al et, 2016.Microscale anthropogenic pollution modelling in a small tropical island during weak trade winds: Lagrangian particle dispersion simulations using real nested LES meteorological fields[J].Atmospheric Environment, 139: 98-112.DOI: 10.1016/j.atmosenv.2016.05.028.
[4]Deardorff J W, 1972.Numerical investigation of neutral and unstable planetary boundary layers[J].Journal of the Atmospheric Sciences, 29(1): 91-115.DOI: 10.1175/1520-0469(1972)029<0091: NIONAU>2.0.CO; 2.
[5]Gopalakrishnan S G, Roy S B, Avissar R, 2000.An evaluation of the scale at which topographical features affect the convective boundary layer using large eddy simulations[J].Journal of the Atmospheric Sciences, 57(2): 334-351.DOI: 10.1175/1520-0469(2000)057<0334: AEOTSA>2.0.CO; 2.
[6]Hu X M, Nielsen-Gammon J W, Zhang F Q, 2010.Evaluation of three planetary boundary layer schemes in the WRF model[J].Journal of Applied Meteorology and Climatology, 49(9): 1831-1844.DOI: 10.1175/2010JAMC2432.1.
[7]Lawrence Berkeley National Laboratory, 2018.About the FLUXNET Network[EB/OL].[2019-03-10].http: //fluxnet.fluxdata.org/about/.
[8]Liu Y B, Warner T, Liu Y W, al et, 2011.Simultaneous nested modeling from the synoptic scale to the LES scale for wind energy applications[J].Journal of Wind Engineering and Industrial Aerodynamics, 99(4): 308-319.DOI: 10.1016/j.jweia.2011.01.013.
[9]Ma M J, Pu Z X, Wang S G, al et, 2011.Characteristics and numerical simulations of extremely large atmospheric boundary-layer heights over an arid region in north-west China[J].Boundary-Layer Meteorology, 140(1): 163-176.DOI: 10.1007/s10546-011-9608-2.
[10]Rai R K, Berg L K, Kosovi? B, al et, 2017.Comparison of measured and numerically simulated turbulence statistics in a convective boundary layer over complex terrain[J].Boundary-Layer Meteorology, 163(1): 69-89.DOI: 10.1007/s10546-016-0217-y.
[11]Shin H H, Hong S Y, 2011.Intercomparison of planetary boundary-layer parametrizations in the WRF model for a single day from CASES-99[J].Boundary-Layer Meteorology, 139(2): 261-281.DOI: 10.1007/s10546-010-9583-z.
[12]Talbot C, Bou-Zeid E, Smith J, 2012.Nested mesoscale large-eddy simulations with WRF: Performance in real test cases[J].Journal of Hydrology, 13(5): 1425-1441.DOI: 10.1175/JHM-D-11-048.1.
[13]Wang H L, Skamarock W C, Feingold G, 2009.Evaluation of scalar advection schemes in the advanced research WRF model using large-eddy simulations of aerosol-cloud interactions[J].Monthly Weather Review, 137(8): 2547-2558.DOI: 10.1175/2009MWR2820.1.
[14]Yue P, Zhang Q, Wang R Y, al et, 2015.Turbulence intensity and turbulent kinetic energy parameters over a heterogeneous terrain of Loess Plateau[J].Advances in Atmospheric Sciences, 32(9): 1291-1302.DOI: 10.1007/s00376-015-4258-9.
[15]Zhang Y, Dubey M K, Olsen S C, al et, 2009.Comparisons of WRF/Chem simulations in Mexico City with ground-based RAMA measurements during the 2006-MILAGRO[J].Atmospheric Chemistry and Physics, 9(11): 3777-3798.DOI: 10.5194/acp-9-3777-2009.
[16]Zhu P, 2008.Simulation and parameterization of the turbulent transport in the hurricane boundary layer by large eddies[J].Journal of Geophysical Research: Atmospheres, 113(D17.DOI: 10. 1029/2007JD009643.
[17]蔡旭晖, 陈家宜, 2000.水平非均匀对流边界层热量平衡和平流输送作用的大涡模拟[J].大气科学, 24(1): 95-102.DOI: 10. 3878/j.issn.1006-9895.2000.01.10.
[18]陈世强, 吕世华, 2013.荒漠区粗糙度长度的确定及在模式中的应用[J].中国沙漠, 33(1): 174-178.DOI: 10.7522/j.issn.1000-694X.2013.00025.
[19]陈星, 余晔, 陈晋北, 等, 2016.黄土高原半干旱区雨养农田地表辐射和能量通量的季节变化[J].高原气象, 35(2): 351-362.DOI: 10.7522/j.issn.1000-0534.2015.00004.
[20]程海艳, 余晔, 陈晋北, 等, 2018.大气红外探测器(AIRS)温、 湿廓线反演产品及边界层高度在黄土高原的验证[J].高原气象, 37(2): 432-442.DOI: 10.7522/j.issn.1000-0534.2017.00094.
[21]杜一博, 张强, 王凯嘉, 等, 2018.西北干旱区夏季晴天、 阴天边界层结构及其陆面过程对比分析[J].高原气象, 37(1): 148-157.DOI: 10.7522/j.issn.1000-0534.2017.00042.
[22]黄倩, 王蓉, 田文寿, 等, 2014.风切变对边界层对流影响的大涡模式研究[J].气象学报, 72(1): 100-115.DOI: 10.11676/qxxb2014.007.
[23]刘树华, 刘振鑫, 郑辉, 等, 2013.多尺度大气边界层与陆面物理过程模式的研究进展[J].中国科学: 物理学 力学 天文学, 43(10): 1332-1355.DOI: 10.1360/132013-247.
[24]马耀明, 姚檀栋, 王介民, 2006.青藏高原能量和水循环试验研究——GAME/Tibet与CAMP/Tibet研究进展[J].高原气象, 25(2): 344-351.
[25]孙学金, 李岩, 张燕鸿, 等, 2017.基于WRF-LES的干早湖区近地面风场模拟与敏感性研究[J].高原气象, 36(3): 835-844.DOI: 10.7522/j.issn.1000-0534.2016.00058.
[26]叶笃正, 符淙斌, 董文杰, 等, 2003.全球变化科学领域的若干研究进展[J].大气科学, 27(4): 435-450.DOI: 10.1007/BF02948883.
[27]张强, 王胜, 2008.西北干旱区夏季大气边界层结构及其陆面过程特征[J].气象学报, 66(4): 599-608.DOI: 10.3321/j.issn: 0577-6619.2008.04.013.
[28]张文煜, 张宇, 陆晓静, 等, 2009.黄土高原半干旱区非均一下垫面粗糙度分析[J].高原气象, 28(4): 763-768.
[29]周旭, 张镭, 陈丽晶, 等, 2017.沙尘暴过程中沙气溶胶对气象场的影响[J].高原气象, 36(5): 1422-1432.DOI: 10.7522 /j.issn.1000-0534.2016.00110.
文章导航

/