论文

重庆地区卫星及再分析降水资料评估

  • 闫燕 ,
  • 刘罡 ,
  • 何军 ,
  • 方德贤 ,
  • 吴钲 ,
  • 陈少颖 ,
  • 汤剑平
展开
  • <sup>1.</sup>南京大学大气科学学院, 江苏 南京 210023;<sup>2.</sup>重庆市气象台, 重庆 401147;<sup>3.</sup>重庆市气象科学研究所, 重庆 401147

收稿日期: 2018-10-29

  网络出版日期: 2020-06-28

基金资助

国家重点研究发展计划项目(2018YFA0606003);国家自然科学基金项目(41875124)

Assessment of Satellite and Reanalysis Precipitation Data in Chongqing

  • Yan YAN ,
  • Gang LIU ,
  • Jun HE ,
  • Dexian FANG ,
  • Zheng WU ,
  • Shaoying CHEN ,
  • Jianping TANG
Expand
  • <sup>1.</sup>School of Atmospheric Sciences, Nanjing University, Nanjing 210023, Jiangsu, China;<sup>2.</sup>Chongqing Meteorological Observatory, Chongqing 401147, China;<sup>3.</sup>Chongqing Institute of Meteorological Sciences, Chongqing 401147, China

Received date: 2018-10-29

  Online published: 2020-06-28

摘要

利用1998 -2012年重庆市34个站点逐时降水观测资料, 分析了重庆地区高时空分辨率卫星产品(Tropical Rainfall Measuring Mission, TRMM; Climate Prediction Center morphing technique, CMORPH)和再分析资料(ECMWF Re-Analysis Interim, ERAIN; Modern-Era Retrospective Analysis for Research and Applications, MERRA; Climate Forecast System Reanalysis, CFSR; Japanese 55-year Reanalysis, JRA55)的可靠性, 并进一步对卫星和再分析资料降水日变化的准确性进行了评估。结果表明, 再分析数据总体上高估了重庆的日降水量。在重庆西南和东南部, TRMM比较接近观测数据。CMORPH在东北部表现最好, 低估了其他地区的降水量。就降水量而言, 卫星资料的结果好于再分析资料。对于日平均降水强度和降水频率, 卫星资料的分布形态与观测资料差异较大, 再分析资料与观测则较为一致。观测资料中降水峰值多出现在午夜, 沿着西南至东北方向有滞后现象。卫星资料各降水要素(PAPIPF)也表现出由西南至东北方向峰值时间滞后的现象。对于不同地形特征上的降水日变化, 卫星和再分析资料的表现有明显差距, 尤其是在夏季山地地区, 再分析资料高估了12:00 -17:00(北京时)的降水。

本文引用格式

闫燕 , 刘罡 , 何军 , 方德贤 , 吴钲 , 陈少颖 , 汤剑平 . 重庆地区卫星及再分析降水资料评估[J]. 高原气象, 2020 , 39(3) : 594 -608 . DOI: 10.7522/j.issn.1000-0534.2019.00040

Abstract

The hourly precipitation data observed at 34 gauge stations in Chongqing during 1998-2012 is compared with the satellite products [Tropical Rainfall Measuring Mission (TRMM), Climate Prediction Center morphing technique (CMORPH)] and reanalysis data [ECMWF Re-Analysis Interim (ERAIN), Modern-Era Retrospective Analysis for Research and Applications (MERRA), Climate Forecast System Reanalysis (CFSR), Japanese 55-year Reanalysis (JRA55)].The reliability of the precipitation products in high spatiotemporal resolution is analyzed, and the accuracy in diurnal variation is also evaluated.The results show the daily precipitation in Chongqing is generally overestimated by the reanalysis data while the satellite products show agreement with the observations.TRMM is accurate and close to the observational data in the southwest and southeast.CMORPH works best in the northeast while underestimates the rainfall in the other areas.There are evident differences in precipitation intensity and frequency between the satellite and observational data, while the reanalysis data appears to be in agreement with the observations.The peak time of precipitation diurnal variation is mostly from midnight to dawn and displays a hysteresis from the southwest to northeast.The precipitation amount (PA), intensity (PI) and frequency (PF) in the satellite products show the hysteresis from the southwest to northeast, too.There is significant difference in diurnal cycle of precipitation between the reanalysis and satellite data over complex terrain.The reanalysis data overestimates the precipitation from 12:00 to 17:00(Beijing time), especially in the mountainous areas in summer.

参考文献


[2]Bao X, Zhang F, 2012.Impacts of the mountain-plains solenoid and cold pool dynamics on the diurnal variation of precipitation over Northern China[J].Atmospheric Chemistry and Physics Discussions, 12(10): 27891-27926.
[3]Bao X, Zhang F, 2013.Evaluation of NCEP-CFSR, NCEP-NCAR, ERA-Interim, and ERA-40 reanalysis datasets against independent sounding observations over the Tibetan Plateau[J].Journal of Climate, 26(1): 206-214.
[4]Bao X, Zhang F, Sun J, 2011.Diurnal variations of warm-season precipitation east of the Tibetan Plateau over China[J].Monthly Weather Review, 139(9): 2790-2810.
[5]Behrangi A, Khakbaz B, Jaw T C, al et, 2011.Hydrologic evaluation of satellite precipitation products over a mid-size basin[J].Journal of Hydrology, 397(3): 225-237.
[6]Carbone R, Tuttle J, 2008.Rainfall occurrence in the US warm season: The diurnal cycle[J].Journal of Climate, 21(16): 4132-4146.
[7]Chen G, Iwasaki T, Qin H, al et, 2014.Evaluation of the warm-season diurnal variability over East Asia in recent reanalyses JRA-55, ERA-Interim, NCEP CFSR, and NASA MERRA[J].Journal of Climate, 27(14): 5517-5537.
[8]Chen G, Sha W, Iwasaki T, 2009a.Diurnal variation of precipitation over southeastern China: 2.Impact of the diurnal monsoon variability[J].Journal of Geophysical Research: Atmospheres, 114(D21): 6149-6150.
[9]Chen G, Sha W, Iwasaki T, 2009b.Diurnal variation of precipitation over southeastern China: Spatial distribution and its seasonality[J].Journal of Geophysical Research: Atmospheres, 114(D13): 267-275.
[10]Chen H, Yu R, Li J, al et, 2010.Why nocturnal long-duration rainfall presents an eastward-delayed diurnal phase of rainfall down the Yangtze River valley[J].Journal of Climate, 23(4): 905-917.
[11]Dai A, Lin X, Hsu K L, 2007.The frequency, intensity, and diurnal cycle of precipitation in surface and satellite observations over low-and mid-latitudes[J].Climate Dynamics, 29(7/8): 727-744.
[12]Derin Y, Yilmaz K K, 2014.Evaluation of multiple satellite-based precipitation products over complex topography[J].Journal of Hydrometeorology, 15(4): 1498-1516.
[13]Dinku T, Connor S J, Ceccato P, 2010.Comparison of CMORPH and TRMM-3B42 over mountainous regions of Africa and South America [M].Satellite Rainfall Applications for Surface Hydrology.Springer, Dordrecht: 193-204.
[14]Groisman P Y, Legates D R, 1994.The accuracy of United States precipitation data[J].Bulletin of the American Meteorological Society, 75(2): 215-227.
[15]Harada Y, Kamahori H, Kobayashi C, al et, 2016.The JRA-55 reanalysis: Representation of atmospheric circulation and climate variability[J].Journal of the Meteorological Society of Japan, 94(3): 269-302.
[16]He H, Zhang F, 2010.Diurnal variations of warm-season precipitation over northern China[J].Monthly Weather Review, 138(4): 1017-1025.
[17]Huffman G J, Bolvin D T, Nelkin E J, al et, 2007.The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales[J].Journal of Hydrometeorology, 8(1): 38-55.
[18]Jiang Z, Zhang D, Xia R, al et, 2017.Diurnal variations of presummer rainfall over Southern China[J].Journal of Climate, 30(2): 755-773.
[19]Joyce R J, Janowiak J E, Arkin P A, al et, 2004.CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution[J].Journal of Hydrometeorology, 5(3): 487-503.
[20]Khan S I, Hong Y, Vergara H J, al et, 2012.Microwave satellite data for hydrologic modeling in ungauged basins[J].IEEE Geoscience and Remote Sensing Letters, 9(4): 663-667.
[21]Kidd C, Bauer P, Turk J, al et, 2012.Intercomparison of high-resolution precipitation products over northwest Europe[J].Journal of Hydrometeorology, 13(1): 67-83.
[22]Kobayashi S, Ota Y, Harada Y, al et, 2015.The JRA-55 reanalysis: General specifications and basic characteristics[J].Journal of the Meteorological Society of Japan.Ser.II, 93(1): 5-48.
[23]Ogden F, Sharif H, Senarath S, al et, 2000.Hydrologic analysis of the Fort Collins, Colorado, flash flood of 1997[J].Journal of Hydrology, 228(1): 82-100.
[24]Qian T, Zhao P, Zhang F, al et, 2015.Rainy-season precipitation over the Sichuan basin and adjacent regions in southwestern China[J].Monthly Weather Review, 143(1): 383-394.
[25]Rienecker M M, Suarez M J, Gelaro R, al et, 2011.MERRA: NASA’s modern-era retrospective analysis for research and applications[J].Journal of Climate, 24(14): 3624-3648.
[26]Saha S, Moorthi S, Pan H L, al et, 2010.The NCEP climate forecast system reanalysis[J].Bulletin of the American Meteorological Society, 91(8): 1015-1057.
[27]Sapiano M, Arkin P, 2009.An intercomparison and validation of high-resolution satellite precipitation estimates with 3-hourly gauge data[J].Journal of Hydrometeorology, 10(1): 149-166.
[28]Shrestha M, Artan G A, Bajracharya S, al et, 2008.Using satellite‐based rainfall estimates for streamflow modelling: Bagmati Basin[J].Journal of Flood Risk Management, 1(2): 89-99.
[29]Simmons A, Uppala S, Dee D, al et, 2007.ERA-Interim: New ECMWF reanalysis products from 1989 onwards[J].ECMWF Newsletter, 110: 25-36.
[30]Skok G, ?agar N, Honzak L, al et, 2016.Precipitation intercomparison of a set of satellite-and raingauge-derived datasets, ERA Interim reanalysis, and a single WRF regional climate simulation over Europe and the North Atlantic[J].Theoretical and Applied Climatology, 123(1/2): 217-232.
[31]Stampoulis D, Anagnostou E N, 2012.Evaluation of global satellite rainfall products over continental Europe[J].Journal of Hydrometeorology, 13(2): 588-603.
[32]Tanaka L M D S, Satyamurty P, Machado L A T, 2014.Diurnal variation of precipitation in central Amazon Basin[J].International Journal of Climatology, 34(13): 3574-3584.
[33]Uppala S, Dee D, Kobayashi S, al et, 2008.Towards a climate data assimilation system: status update of ERA-Interim[J].ECMWF Newsletter, 115(7): 12-18.
[34]Vivoni E R, Entekhabi D, Bras R L, al et, 2006.Extending the predictability of hydrometeorological flood events using radar rainfall nowcasting[J].Journal of Hydrometeorology, 7(4): 660-677.
[35]Xie P, Arkin P A, 1997.Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs[J].Bulletin of the American Meteorological Society, 78(11): 2539-2558.
[36]Yu R, Xu Y, Zhou T, al et, 2007a.Relation between rainfall duration and diurnal variation in the warm season precipitation over central eastern China[J].Geophysical Research Letters, 34(13): 173-180.
[37]Yu R, Zhou T, Xiong A, al et, 2007b.Diurnal variations of summer precipitation over contiguous China[J].Geophysical Research Letters, 34(1): 223-234.
[38]Zhang W, Huang A, Zhou Y, al et, 2017.Diurnal cycle of precipitation over Fujian Province during the pre-summer rainy season in southern China[J].Theoretical and Applied Climatology, 130(3/4): 993-1006.
[39]Zhang Y, Sun J, Fu S, 2014.Impacts of diurnal variation of mountain-plain solenoid circulations on precipitation and vortices east of the Tibetan Plateau during the mei-yu season[J].Advances in Atmospheric Sciences, 31(1): 139-153.
[40]Zhou T, Yu R, Chen H, al et, 2008.Summer precipitation frequency, intensity, and diurnal cycle over China: A comparison of satellite data with rain gauge observations[J].Journal of Climate, 21(16): 3997-4010.
[41]成璐, 沈润平, 师春香, 等, 2014.CMORPH和TRMM 3B42降水估计产品的评估检验[J].气象, (11): 1372-1379.
[42]敬文琪, 崔园园, 刘瑞霞, 等, 2017.影响长江中下游夏季降水的青藏高原水汽抽吸作用和水汽路径的定量化研究[J].高原气象, 36(4): 900-911.DOI: 10.7522/j.issn.1000-0534.2016.00084.
[43]计晓龙, 吴昊旻, 黄安宁, 等, 2017.青藏高原夏季降水日变化特征分析[J].高原气象, 36(5): 1188-1200.DOI: 10.7522/j.issn.1000-0534.2016.00119.
[44]金秋, 张增信, 黄钰瀚, 等, 2017.基于TRMM卫星产品的长江流域降水精度评估[J].人民长江, 48(19): 48-52.
[45]李蒙, 秦天玲, 刘少华, 等, 2017.怒江上游TRMM 3B42V7降水产品资料时空验证及降水特征分析[J].高原气象, 36(4): 950-959.DOI: 10.7522/j.issn.1000-0534.2016.00071.
[46]李娟, 孙建华, 张元春, 等, 2016.四川盆地西部与东部持续性暴雨过程的对比分析[J].高原气象, 35(1): 64-76.DOI: 10.7522/j.issn.1000-0534.2014.00150.
[47]李麒崙, 张万昌, 易路, 等, 2018.GPM与TRMM降水数据在中国大陆的精度评估与对比[J].水科学进展, 29(3): 303-313.
[48]刘田, 阳坤, 秦军, 等, 2018.青藏高原中、 东部气象站降水资料时间序列的构建与应用[J].高原气象, 37 (6): 1449-1457.DOI: 10.7522/j.issn.1000-0534.2018.00060.
[49]谢欣汝, 游庆龙, 保云涛, 等, 2018.基于多源数据的青藏高原夏季降水与水汽输送的联系[J].高原气象, 37(1): 78-92.DOI: 10.7522/j.issn.1000-0534.2017.00030.
[50]宇如聪, 李建, 陈昊明, 等, 2014.中国大陆降水日变化研究进展[J].气象学报, 72(5): 948-968.
[51]宇如聪, 李建, 2016.中国大陆日降水峰值时间位相的区域特征分析[J].气象学报, 74(1): 18-30.
文章导航

/