2018年1月22日在邢台市区倒槽天气系统在低空形成的层状云中利用空中国王飞机搭载的粒子测量系统对水云进行催化作业探测资料, 通过催化前后不同尺度的云粒子微物理变化和卫星监测结果, 研究人工催化后效果响应, 人工催化后目标云效果响应是降水量增加与催化作业之间证据链的重要一环, 为增水效果分析提供坚实基础。结果表明, 冬季冷云发展过程中, 当云凝结核较为同一、 且云被限制在某一层内, 形成浅薄云层时, 云粒子均质增长形成直径为4~6 μm过冷水滴组成的水云, 最大含水量为0.2 g·m-3; 催化作业后, 人工冰核消耗丰富的过冷水迅速增长形成冰晶及冰晶聚合体, 催化使云粒子浓度200 cm-3迅速降到15 cm-3, 100~1000 μm冰晶和雪晶浓度增长到150 L-1, 1000 μm以上降水粒子浓度增长到70 L-1, 出现直径达6000 μm雪花, 表明催化促进降雪形成; 催化影响区形成无云或少云云区, 葵花8卫星云图上沿催化轨迹呈现为深色云带, 表明此次催化作业效果显著。
On January 22, 2018, an inverted trough was passing through the urban area in Xingtai where stratiform clouds were developed in low altitude.A particle measuring system mounted on King Air was used to complete and track the seeding operation.By comparing the microphysical variation of different-scale cloud particles before and after the seeding with satellite results, the artificial seeding was found successfully effective.After the seeding, the result response of target cloud is the key for the chain of evidence between precipitation augmentation and cloud seeding.When cloud condensation nuclei were rather uniform and the cloud was considered as one layer that a shallow cloud layer was formed, the cloud particles would grow homogeneously into supercooled water droplets with diameter between 4~6 μm, which would further form into the water cloud.The maximum liquid content was 0.2 g·m-2.After the seeding, artificial ice nucleus consumed abundant supercooled water and further grew into ice crystals and ice crystal aggregations.The cloud particle concentration dropped from 200 cm-3 into 15 cm-3 because of the seeding, while for the same reason, the concentration of 100~1000 μm ice and snow crystals as well as the concentration of precipitation particles over 1000 μm increased to 150 L-1 and 70 L-1 respectively.Also, the presence of snowflakes with a diameter of 6000 μm showed the evidence of positive effect in facilitating snowing.Since the seeding area was targeting at cloudless or partly cloudy area, the dark cloud band was found in the Himawari-8 satellite cloud pictures along the seeding trajectory clearly proved the seeding operation with significantly effective results.
[1]Solak M E, Yorty D P, Griffith D A, 2003.Estimations of downwind cloud seeding effects in Utah[J].Journal of Weather Modification, 35(1): 1-7.
[2]Geerts B, Miao Q, Yang Y, al et, 2010.An airborne profiling radar study of the impact of glaciogenic cloud seeding on snowfall from winter orographic clouds[J].Journal of the Atmospheric Sciences, 67(10): 3286-3302.
[3]王黎俊, 银燕, 李仑格, 等, 2013a.三江源地区秋季典型多层层状云系的飞机观测分析[J].大气科学, 37(5): 1038-1058.DOI: 10.3878/j.issn.1006-9895.2013.12172.
[4]王黎俊, 银燕, 姚展予, 等, 2013b.三江源地区秋季一次层积云飞机人工增雨催化试验的微物理响应[J].气象学报, 71(5): 925-939.DOI: 10.11676/qxxb2013.070.
[5]余兴, 王晓玲, 戴进.2002.过冷层状云中飞机播云有效区域的模拟研究[J].气象学报, 60(2): 205-214.DOI: 10.11676/qxxb2002. 025.
[6]孙玉稳, 李宝东, 刘伟, 等, 2015.河北秋季层状云物理结构及适播性分析[J].高原气象, 34(1): 237-250.DOI: 10.7522/j.issn.1000 -0534.2013.00172.
[7]孙玉稳, 董晓波, 李宝东, 等, 2019.太行山东麓一次低槽冷锋降水云系云物理结构和作业条件的飞机观测研究[J].高原气象, 38(5): 971-982.DOI: 10.7522/j.issn.1000 -0534.2018.00102.
[8]蔡兆鑫, 周毓荃, 蔡淼, 2013.一次积层混合云系人工增雨作业的综合观测分析[J].高原气象, 32(5): 1460-1469.DOI: 10. 7522/j.issn.1000 -0534.2012.00115.
[9]朱士超, 郭学良, 2014.华北积层混合云中冰晶形状、 分布与增长过程的飞机探测研究[J].气象学报, 72(2): 366-389.DOI: 10.11676/qxxb2014.013.
[10]汪玲, 刘黎平, 2015.人工增雨催化区跟踪方法与效果评估指标研究[J].气象, 41(1): 84-91.DOI: 10.7519/j.issn.1000-0526. 2015.01.010.
[11]师宇, 楼小凤, 单云鹏, 等, 2017.北京地区一次降雪过程的人工催化数值模拟研究[J].高原气象, 36(5): 1276-1289.DOI: 10. 7522/j.issn.1000-0534.2016.00116.
[12]栾澜, 孟宪红, 吕世华, 等, 2017.青藏高原一次对流降水模拟中边界层参数化和云微物理的影响研究[J].高原气象, 36(2): 283-293.DOI: 10.7522/j.issn.1000-0534.2016.00086.
[13]孙霞, 银燕, 韩洋, 等, 2012.石家庄地区雾霾天气下云滴和云凝结核的分布特征[J].中国环境科学, 32(7): 1165-1170.
[14]孙玉稳, 银燕, 孙霞, 等, 2017.冷云催化宏微观物理响应的探测与研究[J].高原气象, 36(5): 1290-1303.DOI: 10.7522/j.issn. 1000 -0534.2016.00113.