论文

基于激光测风雷达的兰州冬季风场特征及其与大气污染的关系

  • 王倩倩 ,
  • 余晔 ,
  • 董龙翔 ,
  • 赵素平 ,
  • 赵果 ,
  • 张彤
展开
  • <sup>1.</sup>中国科学院西北生态环境资源研究院 寒旱区陆面过程与气候变化重点实验室, 甘肃 兰州 730000;<sup>2.</sup>中国科学院大学, 北京 100049;<sup>3.</sup>中国科学院平凉陆面过程与灾害天气观测研究站, 甘肃 平凉 744015;<sup>4.</sup>甘肃省陆面过程与灾害天气野外科学观测研究站, 甘肃 平凉 744015

收稿日期: 2019-11-14

  网络出版日期: 2020-06-28

基金资助

国家重点研发计划项目(2018YFB1502801);国家自然科学基金项目(41575014)

Characteristics of Winter Wind Field in Lanzhou Based on Scanning Lidar and Its Relation to Air Pollution

  • Qianqian Wang ,
  • Ye Yu ,
  • Longxiang Dong ,
  • Suping Zhao ,
  • Guo Zhao ,
  • Tong Zhang
Expand
  • <sup>1.</sup>Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences,Lanzhou 730000, Gansu, China;<sup>2.</sup>University of Chinese Academy of Sciences, Beijing 100049, China;<sup>3.</sup>Pingliang Land Surface Process & Severe Weather Research Station, Pingliang 744015, Gansu, China;<sup>4.</sup>Gansu Land Surface Process & Severe Weather Observation and Research Station, Pingliang 744015, Gansu, China

Received date: 2019-11-14

  Online published: 2020-06-28

摘要

利用激光测风雷达2017年12月1日至2018年2月28日在兰州城区获取的风场资料, 分析了兰州冬季风场结构特征, 并通过聚类分析得到了冬季影响兰州地区的天气形势, 分析了不同天气形势下的风场特征, 在此基础上分析了局地环流主导下的风场和污染物浓度日变化特征及两者之间的相关性。结果表明, 兰州2017年冬季低空水平风速整体较小, 平均风向以偏东风为主; 风场日变化特征明显, 午后至傍晚水平风速大于其他时刻, 03:00(北京时, 下同) -08:00 250~650 m维持偏西风, 650 m以上偏南风增加, 其余时刻各高度均以偏东风为主。兰州地区受弱高压控制时, 局地环流占主导, 城区污染严重。各高度污染系数最大值对应的风向存在差异, 200 m以上污染系数迅速减小, 增加污染物的排放高度至200 m以上可有效减少近地面污染物浓度。

本文引用格式

王倩倩 , 余晔 , 董龙翔 , 赵素平 , 赵果 , 张彤 . 基于激光测风雷达的兰州冬季风场特征及其与大气污染的关系[J]. 高原气象, 2020 , 39(3) : 641 -650 . DOI: 10.7522/j.issn.1000-0534.2019.00009.

Abstract

Based on wind profiles obtained from Scanning Lidar, the characteristics of wind field from 1 December 2017 to 28 February 2018 in Lanzhou were analyzed.Through the cluster analysis, the weather types affecting Lanzhou area in winter was obtained.The characteristics of wind field under different weather types and the diurnal variation characteristic were analyzed.The results show that, winter low-level wind speed during the study period were very low, and were dominated by easterly wind.The diurnal variation of wind field was obvious, with higher wind speed from the afternoon to the evening than during other times.There was westerly wind at the height between 250 m and 700 m from night to the next morning, while easterly wind prevailed the rest of time below 800 m.In addition, local circulation was dominant when the study area was controlled by weak high-pressure, and the related low wind and strong downdraft led to serious pollution.The wind direction with the maximum air pollution index was different at each height and the pollution index decreased rapidly above 200 m.Increase the emission height of pollutants above 200 m can effectively reduce the concentration of near-surface pollutants.

参考文献

[1]Baumgarten G, 2010.Doppler Rayleigh/Mie/Raman Lidar for wind and temperature measurements in the middle atmosphere up to 80 Km[J].Atmospheric Measurement Techniques, 3 (6): 1509-1518.
[2]Bodini N, Zardi D, Lundquist J K, 2017.Three-dimensional structure of wind turbine wakes as measured by scanning lidar[J].Atmospheric Measurement Techniques, 10 (8): 2881-2896.
[3]Boquet M, Royer P, Cariou J P, al et, 2016.Simulation of Doppler Lidar measurement range and data availability[J].Journal of Atmospheric and Oceanic Technology, 33 (5): 977-987.
[4]Chen Y, An J, Wang X, al et, 2017.Observation of wind shear during evening transition and an estimation of submicron aerosol concentrations in Beijing using a Doppler Wind Lidar[J].Journal of Meteorological Research, 31 (2): 350-362.
[5]Devara P C S, Jaya R Y, Sonbawne S M, al et, 2015.First results of compact coherent Doppler Wind Lidar and Its validation at IITM, Pune, India[J].Meteorological Applications, 22 (2): 156-164.
[6]Fiebrich C A, Morgan C R, McCombs A G, al et, 2010.Quality assurance procedures for mesoscale meteorological data[J].Journal of Atmospheric and Oceanic Technology, 27 (10): 1565-1582.
[7]He J, Gong S, Zhou C, al et, 2018.Analyses of winter circulation types and their impacts on haze pollution in Beijing[J].Atmospheric Environment, 192: 94-103.
[8]Huth R, 1996.An intercomparison of computer-assisted circulation classification methods[J].International Journal of Climatology, 16: 893-922,
[9]Huth R, Beck C, Philipp A, al et, 2008.Classifications of atmospheric circulation patterns[J].Annals of the New York Academy of Sciences, 1146 (1): 105-152.
[10]V-M Kumer, Reuder J, Oftedal E R, 2017.Characterization wind turbine wakes under different stability conditions from static Doppler LiDAR measurements[J].Remote Sensing, 9 (3): 242.
[11]P?schke E, Leinweber R, Lehmann V, 2015.An assessment of the performance of a 1.5 μm Doppler Lidar for operational vertical wind profiling based on a 1-year trial[J].Atmospheric Measurement Techniques, 8(6): 2251-2266.
[12]Ruchith R D, Kalapureddy M C R, Deshpande S, al et, 2014.Inter-comparison of wind profiles in the tropical boundary layer remotely sensed from GPS radiosonde and Doppler wind lidar[J].International Journal of Remote Sensing, 35(9): 3300–3315.
[13]Schmidli J, Rotunno R, 2012.Influence of the valley surroundings on valley wind dynamics[J].Journal of the Atmospheric Sciences, 69 (2): 561-577.
[14]Shi P, Zhang G, Kong F, al et, 2019.Variability of winter haze over the Beijing-Tianjin-Hebei region tied to wind speed in the lower troposphere and particulate sources[J].Atmospheric Research, 215: 1-11.
[15]Stull R B, 1988.An introduction to boundary layer meteorology[M].Atmospheric Sciences Library, 8(8): 89.
[16]Vanderwend B J, Lundquist J K, Rhodes M E, al et, 2015.Observing and simulating the summertime low-level jet in central iowa[J].Monthly Weather Review, 143 (6): 2319-2336.
[17]Ye X, Song Y, Cai X, al et, 2016.Study on the synoptic flow patterns and boundary layer process of the severe haze events over the North China Plain in January 2013[J].Atmospheric Environment, 124: 129-145.
[18]Zhang J P, Zhu T, Zhang Q H, al et, 2012.The impact of circulation patterns on regional transport pathways and air quality over Beijing and its surroundings [J].Atmospheric Chemistry and Physics, 12(11): 5031-5053.
[19]Zhao S, Yu Y, Qin D, al et, 2019.Measurements of submicron particles vertical profiles by means of topographic relief in a typical valley city, China[J].Atmospheric Environment, 199: 102-113.
[20]陈雷华, 余晔, 陈晋北, 等, 2010.2001 -2007年兰州市主要大气污染物污染特征分析[J].高原气象, 29(6): 1627-1633.
[21]曹杨, 陈洪滨, 王普才, 2017.声雷达资料可靠性及近地面边界层风场特征分析[J].高原气象, 36(5): 1315-1324.DOI: 10. 7522/j.issn.1000-0534.2016.00100.
[22]董龙翔, 余晔, 左洪超, 等, 2019.WRF-Fluent耦合模式的构建及其对城市大气扩散的精细化模拟[J].中国环境科学, 39(6): 2311-2319.
[23]何建军, 2014.兰州市大气污染物输送特征及污染治理对策的数值模拟研究[D].兰州: 中国科学院寒区旱区环境与工程研究所, 1-117.
[24]何建军, 吴琳, 毛洪钧, 等, 2016.气象条件对河北廊坊城市空气质量的影响[J].环境科学研究, 29(6): 791-799.
[25]黄晨, 朱海龙, 周军, 2017.多普勒测风激光雷达系统[J].光电产品与资讯, 8(2): 49-51.
[26]季国良, 王尧奇, 沈志宝, 等, 1984.兰州市区冬季的低空环流[J].高原气象, 3(2): 42-50.
[27]柯莉萍, 2017.威宁大气边界层风场特征分析.中国气象学会, 第34届中国气象学会年会S8 观测推动城市气象发展——第六届城市气象论坛论文集[C].中国气象学会: 中国气象学会, 6.
[28]刘丹, 高世臣, 2011.K-均值算法聚类数的确定[J].硅谷, (6): 38-39.
[29]李晓霞, 黄涛, 王兴, 等, 2017.兰州新区近地层风场时空特征分析[J].高原气象, 36(4): 1001-1009.DOI: 10.7522 /j.issn. 1000-0534.2016.00092.
[30]刘郁珏, 苗世光, 胡非, 等, 2018.冬奥会小海坨山赛区边界层风场大涡模拟研究[J].高原气象, 37(5): 1388-1401.DOI: 10. 7522/j.issn.1000-0534.2018.00034.
[31]刘宇, 王式功, 尚可政, 等, 2002.兰州市低空风时空变化特征及其与空气污染的关系[J].高原气象, 21(3): 322-326.
[32]李苹, 余晔, 赵素平, 等, 2019.2015-2017年中国近地面O<sub>3</sub>污染状况与影响因素分析[J].高原气象, 38(6): 1344-1353.DOI: 10.7522/j.issn.1000-0534.2019.00066.
[33]覃军, 袁业畅, 李燕, 等, 2001.山区复杂地形条件下的风场分析[J].气候与环境研究, 6(4): 493-497.
[34]靳建军, 张镭, 陈长和, 等, 2000.兰州东部地区冬季地面风场特征[J].兰州大学学报, 36(1): 117-124.
[35]王海龙, 张镭, 陈长和, 等, 1999.兰州市东部地区冬季低空风场和温度场分析[J].兰州大学学报, 35(4): 117–123.
[36]许建明, 常炉予, 马井会, 等, 2016.上海秋冬季PM<sub>2.5</sub>污染天气形势的客观分型研究[J].环境科学学报, 36(12): 4303-4314.
[37]谢学军, 李杰, 王自发, 2010.兰州城区冬季大气污染物日变化的数值模拟[J].气候与环境研究, 15(5): 695-703.
[38]徐永清, 张弛, 王庆祥, 等, 2014.城市近地层风特征与污染系数分析[J].气象与环境科学, 37(3): 55-59.
[39]尹承美, 何建军, 于丽娟, 等, 2019.多尺度气象条件对济南PM<sub>2.5</sub>污染的影响[J].高原气象, 38(5): 1120-1128.DOI: 10.7522/j.issn.1000-0534.2019.00018.
[40]杨莹, 王琨, 崔晨, 等, 2015.哈尔滨市大气污染与气象因素的相关性分析[J].环境工程学报, 9(12): 5945-5950.
[41]杨雪玲, 王颖, 李博, 等, 2018.河谷地形气象要素对污染物浓度的影响[J].环境科学研究, 31(1): 34-41.
[42]曾书儿, 1983.风速风向的矢量平均方法[J].气象, (6): 21–22.
[43]余金香, 陈长和, 1985.兰州市西固盆地1983年8月11日至21日地面水平流场分析[J].环境科学研究, 5: 14-21.
[44]张强, 吕世华, 张广庶, 2003.山谷城市大气边界层结构及输送能力[J].高原气象, 22(4): 346-353.
[45]张嘉荣, 程雪玲, 2020.基于CFD降尺度的复杂地形风场数值模拟研究[J].高原气象, 39(1): 172-184.DOI: 10.7522/j.issn. 1000-0534.2019.00005.
文章导航

/