森林是整个国民经济持续、 健康、 快速发展的基础, 森林火灾对全球生态系统和生态环境影响巨大。我国是一个森林种类丰富, 但是人均占有匮乏的国家。对森林火灾的管理和预测是我国森林防护不可缺少的一部分。本文使用NCEP/NCAR再分析数据集Ⅰ的500 hPa高度场逐月资料、 由中国林科院提供的2007 -2017年全国森林火灾数据和512个基本、 基准气象观测站气温与降水逐月资料, 分析了西太平洋副热带高压(下称西太副高)对我国森林火灾的影响状况。研究表明: (1)自2007年以来, 全国森林火灾发生次数呈下降趋势, 平均每年发生火灾940次。火灾高发的3个年份是2007、 2008和2009年, 火灾较少的3个年份是2016、 2015和2012年; 森林火灾发生最频繁的3个月份是3月、 2月和4月, 火灾发生较少的3个月份是9月、 8月和7月。(2)我国森林火灾主要分布在东北地区、 华东部分省份、 华中地区、 华南、 西南部分省份; 2007 -2010年火灾发生次数较多, 2011 -2016年火灾发生次数较少; 春季与冬季森林火灾较多, 夏季森林火灾较少。(3)森林火灾的发生受气温、 降水的影响, 和降水呈较为显著的负相关, 和气温呈较为显著的正相关。(4)西太副高对我国森林火灾具有一定的指示作用。西太副高面积指数、 脊线指数、 西脊点指数都与森林火灾次数呈较为显著的负相关。随着副高强度增强、 副高位置西伸北进, 华南、 江淮地区森林火灾风险降低。
Forests are the foundation for sustained, healthy and rapid development of the entire national economy. Forest fires have a huge impact on global ecosystems and human society. China is a country with abundant forest species but insufficient per capita possession. The management and prediction of forest fires is an indispensable part of forest protection in China. This paper uses the monthly data of 500 hPa potential height field in NCEP/NCAR reanalysis dataset I, the forest fire data in China from 2007 to 2017 which provided by the Chinese Academy of Forestry, monthly data of the temperature and precipitation at 512 meteorological observation stations. The aim of the paper is to analyze the impact of the West Pacific subtropical high on forest fires in China. The following conclusions have been drawn: (1) Since 2007, the number of forest fires in the country has shown a downward trend. On average, the number of fires in the year is 940. The higher three years with fire occurrence are 2007, 2008 and 2009, and the lower three years are 2016, 2015 and 2012.The three months in which forest fires occur more frequently are March, February, and April, and the less three months are September, August, and July. (2) China's forest fires are mainly distributed in the Northeastern China, some provinces in East China, Central China, South China, and some provinces in Southwestern China. There were more fires in 2007 -2010, and fewer fires occurred in 2011 -2016. There were more forest fires in spring and winter, and fewer fires in summer, respectively. (3) The occurrence of forest fires is affected by temperature and precipitation, and has a significant negative correlation with precipitation and a significant positive correlation with temperature. (4) The West Pacific subtropical high has a certain directive effect on forest fires in China. Subtropical high ridge index, subtropical high area index, and subtropical high ridge point all have significant negative correlations with the number of forest fires. With the increase in the intensity of the West Pacific subtropical high, the northward and westward extension of West Pacific subtropical high, the risk of forest fires in southern China is reduced. This study considers the impact of the West Pacific subtropical high on forest fires and has important implications for the control and prediction of forest fires in China, and has a certain directive significance for the usage of the researches on the West Pacific subtropical high.
[1]Alain V, Claire D R, 1995. Evaluating forest fire hazard with a Landsat TM derived water stress index[J]. Agricultural and Forest Meteorology, 77(3): 207-224. DOI: 10.1016/0168-1923(95)02262-V.
[2]Clark K C, 1996. Recent trends in geographic information system research[M]. USA: Geoprocessing.
[3]Dey D C, 2014. Sustaining oak forests in eastern North America: regeneration and recruitment, the pillars of sustainability[J]. Forest Science, 60(5): 926-942. DOI: 10.5849/forsci.13-114.
[4]Kozlowski T T, Pallardy S G, 1997. Growth Control in woody plants[M]. USA: Academic Press.
[5]Kozlowski T, 2000. Responses of woody plants to human-induced environmental stresses: issues, problems and strategies for alleviating stress[J]. Critical Reviews in Plant Sciences, 19(2): 91-170. DOI: 10.1016/S0735-2689(00)80001-5.
[6]Lin R, Zhu J, Zheng F, 2016. Decadal shifts of East Asian summer monsoon in a climate model free of explicit GHGs and aerosols[J]. Scientific Reports, (6): 38-46. DOI: 10.1038/srep38546.
[7]Matt W J, Cochrane M A, Patrick H F, al et, 2014. Climate-induced variations in global wild?re danger from 1979 to 2013[J]. Nature Communications, 6: 252-271. DOI: 10.1038/ncomms8537.
[8]Sander V, Brendan M, Rogers M L, al et, 2017. Lightning as a major driver of recent large ?re years in North American boreal forests[J]. Nature Climate Change, 7(7): 529-536. DOI: 10. 1038/NCLIMATE3329.
[9]Siegert F, Ruecker G, Hinrichs A, al et, 2001. Increased damage from fires in logged forests during droughts caused by El Nino[J]. Nature, 414(6862): 437-440. DOI: 10.1038/35106547.
[10]Ye T S, Zhi R, Zhao J H, al et, 2014. The two annual northward jumps of the West Pacific Subtropical High and their relationship with summer rainfall in Eastern China under global warming[J]. Chinese Physics B, 23(6): 169-203.
[11]池再香, 胡跃文, 夏阳, 等, 2019. 云贵高原东部两次典型气象干旱年汛期环流特征对比[J]. 高原气象, 38(3): 528-538. DOI: 10.7522/j.issn.1000-0534.2018.00161.
[12]池再香, 夏阳, 刘莉娟, 等, 2018. 基于积温干燥度指数的云贵高原东部汛期干湿变化趋势分析[J]. 高原气象, 37(6): 1199-1207. DOI: 10.7522/j.issn.1000-0534.2018.00075.
[13]龚道溢, 何兆学, 2002. 西太平洋副热带高压的年代际变化及其气候影响[J]. 地理学报, 57(2): 185-193.
[14]桓玉, 李跃清, 2018. 夏季东亚季风和南亚季风协同作用与我国南方夏季降水异常的关系[J]. 高原气象, 37(6): 1563-1577. DOI: 10.7522/j.issn.1000-0534.2018.00044.
[15]黄家俊, 张强, 张生, 等, 2017. 基于信息熵的新疆降水时空变异特征研究[J]. 生态学报, 37(13): 4444-4455. DOI: 10.5846/stxb201412052409.
[16]金爱浩, 曾刚, 余晔, 等, 2018. 南亚高压与西太平洋副热带高压经纬向位置配置对中国东部夏季降水的影响[J]. 热带气象学报, 34(6): 807-818. DOI: 10.16032/j.issn.1004-4965.2018. 06.009.
[17]李斐, 2017. 开都河流域上游气候变化及其对水资源的影响[D]. 兰州: 兰州大学.
[18]李红革, 薛梅, 王晓明, 2009. 谈森林火灾与气象要素的密切关系[J]. 林业勘查设计, 152(4): 109-120.
[19]刘珉, 2014. 多角度解读第八次全国森林资源清查结果[J]. 林业经济, 5: 3-15. DOI: 10.13843/j.cnki.lyjj.2014.05.001.
[20]刘芸芸, 丁一汇, 2009. 西北太平洋夏季风对中国长江流域夏季降水的影响[J]. 大气科学, 33(6): 1225-1237.
[21]刘芸芸, 李维京, 艾秀, 等, 2012. 月尺度西太平洋副热带高压指数的重建与应用[J]. 应用气象学报, 23(4): 414-423.
[22]舒立福, 张小罗, 戴兴安, 等, 2003. 林火研究综述(Ⅱ)——林火预测预报[J]. 世界林业研究, 16(4): 34-37. DOI: 10.13348/j.cnki.sjlyyj.2003.04.007.
[23]覃先林, 2005. 遥感和地理信息系统技术相结合的林火预警方法的研究[D]. 北京: 中国林科院资源信息所遥感室.
[24]吴姗薇, 郭大勇, 2019. 东亚夏季风与西太副高活动对全国夏季降水的影响[J]. 科技创新导报, 16: 112-119. DOI: 10.16660/j.cnki.1674-098X.2019.16.112.
[25]肖刚, 2005. 国内外森林防火技术现状及趋势探讨[D]. 天津: 天津大学.
[26]许田田, 范广洲, 张永莉, 等, 2018. 东亚与太平洋地区热力差异对东亚季风的影响[J]. 高原气象, 37(6): 1643-1654. DOI: 10. 7522/j.issn.1000-0534.2018.00053.
[27]许云凡, 陈权亮, 郑飞, 2018. 夏季西太平洋副高年际变化及异常特征分析[J]. 海洋预报, 35(6): 25-33. DOI: 10.11737/j.issn.1003-0239.2018.06.003.
[28]姚秀萍, 于玉斌, 刘还珠, 2005. 2003年淮河流域异常降水期间副热带高压的特征[J].热带气象学报, 21(4): 393-401. DOI: 10.16032/j.issn.1004-4965.2005.04.007.
[29]于成龙, 2007. 基于GIS和RS森林火险预测的研究[D]. 哈尔滨: 东北林业大学.
[30]于天宠, 张智奇, 曲骅倩, 等, 2016. 西太平洋副热带高压与中国气温变化的相关性分析[J]. 现代农业科技, 1: 268-272.
[31]张宇, 李耀辉, 王劲松, 等, 2014. 2013年7月我国南方异常持续高温成因分析[J]. 热带气象学报, 30(6): 1172-1180. DOI: 10. 3969/j.issn.1004-4965.2014.06.018.