论文

1961 -2017年青藏高原暖湿季节极端降水时空变化特征

  • 冯晓莉 ,
  • 申红艳 ,
  • 李万志 ,
  • 汪青春 ,
  • 段丽君 ,
  • 李红
展开
  • <sup>1.</sup>青海省气候中心, 青海 西宁 810001;<sup>2.</sup>青海省河南蒙古族自治县气象局, 青海 河南 811500

收稿日期: 2020-02-11

  网络出版日期: 2020-08-28

基金资助

中国气象局气候变化专项(CCSF201929);第二次青藏高原综合科学考察研究(2019QZKK0906);中国气象局预报员专项(CMAYBY2020-139)

Spatiotemporal Changes for Extreme Precipitation in Wet Season over the Qinghai-Tibetan Plateau and the Surroundings during 1961 -2017

  • Xiaoli FENG ,
  • Hongyan SHEN ,
  • Wanzhi LI ,
  • Qingchun WANG ,
  • Lijun DUAN ,
  • Hong LI
Expand
  • <sup>1.</sup>Qinghai Climate Centre, Xining 810001, Qinghai, China;<sup>2.</sup>Meteorological Bureau of Henan County, Henan 811500, Qinghai, China

Received date: 2020-02-11

  Online published: 2020-08-28

摘要

基于1961 -2017年5 -9月青藏高原99个地面气象观测站点的逐日降水资料, 选取10个极端降水指数, 采用线性倾向估计、 累积距平、 相关分析、 尺度分离等方法, 分析青藏高原暖湿季节极端降水的时空分布及变化特征。结果表明: 近57年来, 青藏高原暖湿季节降水强度、 1日最大降水量、 连续5日最大降水量显著增加, 进入21世纪后降水向强雨量雨日更多、 强度更强、 极值更大、 时间更集中的方向发展; 极端降水指数普遍存在3年、 4~8年、 10~11年、 20~30年以及更长时间尺度的周期变化, 准3年周期振荡对极端降水的贡献最大; 各极端降水指数之间联系密切, 中雨以上天数与暖湿季节降水总量的相关性最好; 降水总量、 强度、 强雨量雨日、 极值均由西向东、 由北向南增强增多, 降水强度、 大雨以上天数还随海拔高度的增加而显著减弱和减少, 最长连续有降水日数自北向南、 由低向高递增, 最长连续无降水日数由西向东递减; 东北及西南部极端降水事件增加最显著, 持续指数倾向率空间差异大, 其中最长连续无降水日数倾向率自西向东、 由高向低递增; 北大西洋多年代际振荡(the Atlantic Multidecadal Oscillation, AMO)和厄而尼诺南方涛动(El Ni?o-Southern Oscillation, ENSO)对青藏高原暖湿季节极端降水增多增强有一定影响。

本文引用格式

冯晓莉 , 申红艳 , 李万志 , 汪青春 , 段丽君 , 李红 . 1961 -2017年青藏高原暖湿季节极端降水时空变化特征[J]. 高原气象, 2020 , 39(4) : 694 -705 . DOI: 10.7522/j.issn.1000-0534.2020.00029

Abstract

Basing on the daily precipitation data from 99 observatories over the Qinghai-Tibetan Plateau and the surroundings during 1961-2017 by using of 10 extreme precipitation indices and methods including linear tendency estimation, correlation analysis, cumulative anomaly and time scales separation, the characteristics for spatiotemporal changes were analyzed.The results demonstrated that: the extreme precipitation indices including SDII, RX1 and RX5 increased significantly during 1961-2017.The precipitation amounts, the number of heavy rainy events, the intensity and the daily maximum values were becoming greater and stronger, and the precipitation duration was shorter since 2000.There were 3 year, 4~8 year, 10~11 year, 20~30 year quasi-cycle oscillations for the extreme precipitation indicies during 1961-2017.Among them, the 3 year quasi-cycle oscillation occupied a dominant position.The correlations between extreme precipitation indices were positive and significant.The highly correlation was found between the R10 and PRCPTOT.The precipitation amounts, the number of heavy rainy events, the intensity and the daily maximum values increased from west to east and from north to south, meanwhile SDII and R25 decreased with the increased altitude.CWD increased from north to south and from low to high altitude, and CDD decreased from west to east.The trends for most indices in the northeast and southwest parts increased most significantly.The CWD and CDD linear trends had large spatial differences and the CDD tendency increased from west to east and from high to low altitude.The Atlantic Multidecadal Oscillation (AMO) and El Nino-Southern Oscillation (ENSO) were important oceanic oscillations affecting the extreme precipitation variation over the Qinghai-Tibetan Plateau and the surroundings during 1961-2017.

参考文献

[1]Changnon S A, Pielke R A, Changnon D, al et, 2000.Human factors explain theincreased losses from weather and climate extremes[J].Bulletin of the American Meteorological Society, 81(3): 437-442.
[2]Dai A G, 2013.The influence of the inter-decadal Pacific oscillation on US precipitation during 1923-2010[J].Climate Dynamics, 41: 633-646.
[3]Enfield D B, Mestas-Nunez A M, Trimble P J, 2001.The Atlantic multidecadal oscillation and it's relation to rainfall and river flows in the continental U.S.[J].Geophysical Research Letters, 28(10): 2077-2080.
[4]Hu Z Z, Yang S, Wu R G, 2003.Long-term climate variations in China and global warming signals[J].Journal of Geophysical Research, 108(D19): 4614-4624.
[5]Lan C, Zhang Y X, 2017.Spatial patterns of wet season precipitation vertical gradients on the tibetan plateau and the surroundings[J].Scientific Reports, 7: 5057-5066.
[6]Lu R Y, Dong B W, Ding H, 2006.Impact of the Atlantic multi-decadal oscillation on the Asian summer monsoon[J].Geophysical Research Letters, 33: L24701.DOI: 10.1029/2006GL027655.
[7]Mantua N J, Hare S R, Zhang Y, al et, 1997.A Pacific interdecadal climate oscillation with impacts on salmon production[J].Bulletin of the American Meteorological Society, 78(6): 1069-1079.
[8]Peterson T, Folland C, Gruza G, al et, 2001.Report on the activities of the working group on climate change detection and related raporteurs[M].Geneva: World Meteorological Organization.
[9]Stocker T F, Qin D H, Plattner G K, al et, 2013.IPCC 2013: Summary for Policy Makers.In: Climate change: The physical science basis.Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change[R].Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
[10]Ting M F, Kushnir Y, Seager R, al et, 2011.Robust features of Atlantic multi-decadal variability and its climate impacts[J].Geophysical Research Letters, 38: L17705.DOI: 10.1029/2011GL048712.
[11]Trenberth K E, 1997.The definition of El Nino[J].Bulletin of the American Meteorological Society, 78(12): 2771-2777.
[12]Wang Y M, Li S L, Luo D H, 2009.Seasonal response of Asian monsoonal climate to the Atlantic MultidecadalOscillation[J].Journal of Geophysical Research: Atmospheres, 114: D02112.DOI: 10.1029/2008JD010929.
[13]Wu Z H, Huang N E, 2009.Ensemble empirical mode decomposition: A noise-assisted data analysis method[J].Advances in Adaptive Data Analysis, 1(1): 1-41.
[14]You Q L, Kang S C, Aguilar E, al et, 2008.Changes in daily climate extremes in the eastern and central Tibetan Plateau during 1961-2005[J].Journal of Geophysical Research, 113: D07101.DOI: 10.1029/2007JD009389.
[15]常国刚, 李凤霞, 李林, 2005.气候变化对青海生态与环境的影响及对策[J].气候变化研究进展, 1(4): 172-175.
[16]陈姣, 张耀存, 2016.气候变化背景下陆地极端降水和温度变化区域差异[J].高原气象, 35(4): 955-968.DOI: 10.7522/j.issn. 1000-0534.2015.00075.
[17]曹瑜, 游庆龙, 马茜蓉, 等, 2017.青藏高原夏季极端降水概率分布特征[J].高原气象, 36(5): 1176-1187.DOI: 10.7522/j.issn. 1000-0534.2016.00131.
[18]曹瑜, 游庆龙, 马茜蓉, 等, 2019.青藏高原中东部夏季极端降水年代际变化特征[J].气象科学, 39(4): 437-445.
[19]冯松, 汤懋苍, 王冬梅, 1998.青藏高原是我国气候变化启动区的新证据[J].科学通报, 43(6): 633-636.
[20]管晓丹, 马洁茹, 黄建平, 等, 2019.海洋对干旱半干旱区气候变化的影响[J].中国科学: 地球科学, 49(6): 895-912.
[21]华丽娟, 马柱国, 2009.亚洲和北美干湿变化及其与海表温度异常的关系 [J].地球物理学报, 52(5), 60-72.
[22]胡梦玲, 游庆龙, 2019.青藏高原南侧经圈环流变化特征及其对降水影响分析[J].高原气象, 38(1): 14-28.DOI: 10.7522/j.issn. 1000-0534.2018.00064.
[23]冀钦, 杨建平, 陈虹举, 2018.1961-2015年青藏高原降水量变化综合分析[J].冰川冻土, 40(6): 30-39.
[24]卢爱刚, 康世昌, 庞德谦, 等, 2008.中国降水量区域变化稳定性研究[J].生态环境, 17(6): 2433-2435.
[25]陆龙骅, 卞林根, 张正秋, 2011.极地和青藏高原地区的气候变化及其影响[J].极地研究, 23(2): 82-89.
[26]李双林, 井元元, 罗菲菲, 2015.工业革命前中国气温与大西洋年代际振荡(AMO)的可能联系[J].中国科学: 地球科学, 45(6): 864-878.
[27]马佳宁, 高艳红, 2019.近50年黄河上游流域年均降水与极端降水变化分析[J].高原气象, 38(1): 124-135.DOI: 10.7522/j.issn.1000-0534.2018.00126.
[28]牛亚菲, 1999.青藏高原生态环境问题研究[J].地理科学进展, 18(2): 163-171.
[29]施能, 陈家其, 屠其璞, 1995.中国近100年来4个年代际的气候变化特征[J].气象学报, 53(4): 431-439.
[30]孙鸿烈, 郑度, 姚檀栋, 等, 2012.青藏高原国家生态安全屏障保护与建设[J].地理学报, 67(1): 3-12.
[31]孙建奇, 敖娟, 2013.中国冬季降水和极端降水对变暖的响应[J].科学通报, 58(8): 674-679.
[32]魏凤英, 1999.现代气候统计诊断预测技术[J].北京: 气象出版社: 62-71.
[33]吴国雄, 段安民, 张雪芹, 等, 2013.青藏高原极端天气气候变化及其环境效应[J].自然杂志, 35(3): 167-171.
[34]谢欣汝, 游庆龙, 保云涛, 等, 2018.基于多源数据的青藏高原夏季降水与水汽输送的联系[J].高原气象, 37(1): 78-92.DOI: 10.7522/j.issn.1000-0534.2017.00030.
[35]姚檀栋, 朱立平, 2006.青藏高原环境变化对全球变化的响应及其适应对策[J].地球科学进展, 21(5): 459-464.
[36]赵昕奕, 张惠远, 万军, 2002.青藏高原气候变化对气候带的影响[J].地理科学, 22(2): 190-195.
[37]谌芸, 2004.青藏高原东北部地区大到暴雨天气过程的研究[D].南京: 南京气象学院.
[38]张小莹, 2014.我国极端降水时空特征及风险分析[D].上海: 上海师范大学.
[39]赵雪雁, 王亚茹, 张钦, 等, 2015.近50a青藏高原东部夏半年强降水事件的气候特征[J].干旱区地理, 38 (4): 33-41.
[40]章杰, 鱼京善, 来文立, 2017.全球变暖背景下极端降水变化率与气温的响应关系 [J].北京师范大学学报: 自然科学版, 53(6): 722-726.
[41]张霞, 李明星, 马柱国, 2018.近30年全球干旱半干旱区的蒸散变化特征[J].大气科学, 42(2): 251-267.
[42]张宇欣, 李育, 朱耿睿, 2019.青藏高原海拔要素对温度、 降水和气候型分布格局的影响[J].冰川冻土, 41(3): 505-515.
文章导航

/