论文

若尔盖高寒湿地-大气间水热交换湍流通量的日变化特征分析

  • 陆宣承 ,
  • 文军 ,
  • 田辉 ,
  • 杨越 ,
  • 杨奥莉
展开
  • <sup>1.</sup>成都信息工程大学大气科学学院/高原大气与环境四川省重点实验室, 四川 成都 610225;<sup>2.</sup>中国科学院西北生态环境与资源研究院/中国科学院寒旱区陆面过程与气候变化重点实验室, 甘肃 兰州 730000

收稿日期: 2019-04-09

  网络出版日期: 2020-08-28

基金资助

国家自然科学基金项目(41530529)

Analysis of the Turbulent Fluxes of Water & Heat Exchange between the Zoige Alpine Wetland and Atmosphere

  • Xuancheng LU ,
  • Jun WEN ,
  • Hui TIAN ,
  • Yue YANG ,
  • Aoli YANG
Expand
  • <sup>1.</sup>College of Atmospheric Sciences, Chengdu University of Information Technology/ Sichuan Key Laboratory of Plateau Atmosphere and Environment, Chengdu 610225, Sichuan, China;<sup>2.</sup>Northwest Institute of Ecological Environment and Resources, Chinese Academy of Sciences / Key Laboratory of Land Surface Process and Climate Change in the Cold and Arid Region of the Chinese Academy of Sciences, Lanzhou 730000, Gansu, China

Received date: 2019-04-09

  Online published: 2020-08-28

摘要

湿地近地面水热交换对陆面过程乃至天气气候变化有着显著影响, 准确量化湿地与大气间的水热交换通量具有重要意义。本文利用中国科学院西北生态环境与资源研究院若尔盖花湖湿地陆面过程与气候变化观测场(下称花湖观测场)2017年3月至2018年3月涡动相关系统的观测数据, 各季节选取3个典型晴天, 分析了若尔盖湿地近地面的感热通量和潜热通量日变化特征, 并与鄂陵湖和玛曲草原的观测值进行对比, 同时计算了湿地下垫面的能量闭合率。结果表明: 若尔盖高寒湿地-大气间的水热交换过程存在着明显的日变化特征。感热通量和潜热通量的日变化过程都为单峰型, 在14:00(北京时, 下同) -15:00达到最大值, 感热通量最大值可达101.7 W·m-2。潜热通量最大值可达412.6 W·m-2。寒冷干燥季节的感热通量日平均值比温暖湿润季节大18.0%; 而温暖潮湿季节潜热通量日平均值比寒冷干燥季节高68.7%。本文还将湿地水热交换过程与玛曲草原以及鄂陵湖湖面的观测数据进行了对比发现: 夏季, 若尔盖湿地近地面与鄂陵湖湖面向大气输送的感热和潜热总量相当, 但湿地日变化幅度远大于湖面, 通常为湖面的4~7倍。玛曲草原夏季感热通量日变幅约为若尔盖湿地的1.5倍, 而湿地夏季潜热通量总量约为草原的1.2倍。在地表向上的通量中, 能量不平衡所占的比例: 春季27.7%, 夏季22.7%, 秋季15.7%, 冬季19.4%。湿地全年主要以潜热的形式向大气输送能量, 夏季潜热通量占有效能量的比例可达58.0%。

本文引用格式

陆宣承 , 文军 , 田辉 , 杨越 , 杨奥莉 . 若尔盖高寒湿地-大气间水热交换湍流通量的日变化特征分析[J]. 高原气象, 2020 , 39(4) : 719 -728 . DOI: 10.7522/j.issn.1000-0534.2019.00073

Abstract

The water & heat exchange fluxes between wetland and atmosphere have significant impact on the land surface process and even the weather and climate change.It is of great significance to accurately quantify the water & heat exchange fluxes between the wetland and the atmosphere.By using the observation data of the eddy-covariance system in the Zoige alpine wetland Land Surface Process and Climate Change Observatory (hereinafter referred to as “Flower Lake Observatory”) of the Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, from March 2017 to March 2018.The diurnal cycle characteristics of the sensible heat flux and latent heat flux in the Zoige wetland were analyzed by selecting three fully cloud-free days each season, and inter-compared to the observed values of Ngoring lake and Maqu grassland.The energy closure ratio over the Zoige alpine wetland was calculated.The results show that there are evident diurnal cycles in the water & heat exchange fluxes between the Zoige alpine wetland and the atmosphere.The diurnal variation cycle of sensible heat flux and latent heat flux are unimodal, reaching a maximum at 14:00 to 15:00 (Beijing time).The daily average of sensible heat flux in the cold and dry season is 18.0% larger than that in the warm and humid season; While the daily average of latent heat flux in the warm and humid season is 68.7% higher than that in the cold and dry season.The observed sensible heat flux and latent heat flux are also compared to the ones of the Maqu grassland and the Ngoring lake surface.It is found that the sensible heat and latent heat transported to the atmosphere from the surface of Zoige wetland is similar to that from the surface of Ngoring lake in summer.The diurnal cycle of the wetlands is much larger than that of the lake surface, which is around 4 to 7 times that of the lake surface.The diurnal cycle of sensible heat flux in the Maqu grassland is about 1.5 times of that in the Zoige wetland, while the total latent heat flux of the wetland in summer is about 1.2 times that of the grassland.Among the energy transported upwards from the surface, the proportion of energy imbalance is 27.7% in spring, 22.7% in summer, 15.7% in autumn, and 19.4% in winter.The wetland mainly transfers energy to the atmosphere in the form of latent heat throughout the whole year.The proportion of latent heat flux to the effective energy reaches 58.0% in summer.

参考文献

[1]Liebethal C, Huwe B, Foken T, 2005.Sensitivity analysis for two ground heat flux calculation approaches[J].Agricultural & Forest Meteorology, 132(3/4): 253-262.DOI: 10.1016/j.agrformet. 2005.08.001.
[2]Meyers T P, Hollinger S E, 2004.An assessment of storage terms in the surface energy balance of maize and soybean [J].Agricultural and Forest Meteorology, 125(1): 105-115.DOI: 10.1016/j.agrformet.2004.03.001.
[3]Tonti N E, Gassmann M I, Pérez C F, 2018.First results of energy and mass exchange in a salt marsh on southeastern South America[J].Agricultural & Forest Meteorology, 263: 59-68.DOI: org/10.1016/j.agrformet.2018.08.001.
[4]Zhao X S, Liu Y B, 2017.Phase transition of surface energy exchange in China’s largest freshwater lake [J].Agricultural and Forest Meteorology, 244/245: 98-110.DOI: 10.1016/j.agrformet. 2017.05.024.
[5]Kim Y, Kimball J S, Du J, al et, 2018.Quantifying the effects of freeze-thaw transitions and snowpack melt on land surface albedo and energy exchange over Alaska and Western Canada[J].Environmental Research Letters, 13(7): 1-14.DOI: 10.1088/1748-9326/aacf72.
[6]曹生奎, 曹广超, 陈克龙, 等, 2016.青海湖高寒湿地生态系统CO<sub>2</sub>通量和水汽通量间的耦合关系[J].中国沙漠, 36(5): 1286-1294.DOI: 10.7522/j.issn.1000-694x.2016.00029.
[7]陈晗, 张翔宇, 2016.涡动相关法在蒸散发实测中的运用[J].黑龙江水利, 2(11): 18-22.
[8]陈金雷, 文军, 王欣, 等, 2017.黄河源高寒湿地-大气间暖季水热交换特征及关键影响参数研究[J].大气科学, 41(2): 302-312.DOI: 10.3878/j.issn.1006-9895.1607.16103.
[9]郭斌, 王珊, 张菡, 等, 2018.若尔盖湿地天然牧草生育期变化特征及其对气候变化的响应[J].高原山地气象研究, 38(2): 49-57.DOI: 10.3969/j.issn.1674-2184.2018.02.008.
[10]李宏宇, 张强, 赵建华, 2012.论地表能量不平衡的原因及其解决办法[J].干旱区研究, 29(2): 222-232.
[11]李建军, 张军龙, 郭玉涛, 2016.晚更新世以来若尔盖盆地的地层划分及构造-气候意义[J].地震地质, 38(4): 950-963.DOI: 10.3969/j.issn.0253-4967.2016.04.012.
[12]李玉, 康晓明, 郝彦宾, 等, 2014.黄河三角洲芦苇湿地生态系统碳、 水热通量特征[J].生态学报, 34(15): 4400-4411.DOI: 10.5846/stxb201212051750.
[13]刘渡, 李俊, 于强, 等, 2012.涡度相关观测的能量闭合状况及其对农田蒸散测定的影响[J].生态学报, 32(17): 5309-5317.DOI: 10.846/stxb201201220123.
[14]罗琪, 文军, 王欣, 等, 2017.黄河源高寒湿地-大气间水热和碳交换通量日变化特征的观测分析[J].高原气象, 36(3): 667-674.DOI: 10.7522 /j.issn.1000-0534.2016.00062.
[15]吕达仁, 陈佐忠, 王庚辰, 等, 1997.内蒙古半干旱草原土壤-植被-大气相互作用-科学问题与实验计划概述[J].气候与环境研究, 2(3): 199-209.
[16]宋春林, 孙向阳, 王根绪, 2015.森林生态系统碳水关系及其影响因子研究进展[J].应用生态学报, 26(9): 2891-2902.DOI: 10.13287/j.1001-9332.20150630.020.
[17]田志伟, 王维真, 王介民, 2016.植被大气间能量储存分项对能量闭合率的影响分析[J].冰川冻土, 38(3): 94-803.DOI: 10. 7522/j.issn.1000-0240.2016.0089.
[18]吴家兵, 关德新, 张弥, 等, 2005.涡动相关法与波文比-能量平衡法测算森林蒸散的比较研究—以长白山阔叶红松林为例[J].生态学杂志, 24(10): 1245-1249.DOI: 10.13292/j.1000-4890.2005.0136.
[19]徐安伦, 李建, 彭浩, 等, 2017.洱海湖滨农田下垫面大口径闪烁仪与涡动相关仪测量的湍流热通量对比分析[J].高原气象, 36(1): 98-106.DOI: 10.7522/j.issn.1000-0534.2016. 00009.
[20]徐自为, 刘绍民, 徐同仁, 等, 2013.不同土壤热通量测算方法的比较及其对地表能量平衡闭合影响的研究[J].地球科学进展, 28(8): 875-889.
[21]杨启东, 左洪超, 杨扬, 等, 2012.近地层能量闭合度对陆面过程模式影响[J].地球物理学报, 55(9): 2876-2888.DOI: 10. 6038/j.issn.0001-5733.2012.09.007.
[22]张强, 黄荣辉, 王胜, 等, 2005.西北干旱区陆—气相互作用试验(NWC-ALIEX)及其研究进展[J].地球科学进展, 20(4): 427-441.
[23]张永民, 赵士洞, 2007.全球生态系统的状况与趋势[J].地球科学进展, 22(4): 403-409.
文章导航

/