论文

黄土高原塬区近地面层重力波的辨识及其特征研究

  • 张署林 ,
  • 陈晋北 ,
  • 余晔 ,
  • 赵素平 ,
  • 贾伟
展开
  • <sup>1.</sup>中国科学院西北生态环境资源研究院/寒旱区陆面过程与气候变化重点实验室, 甘肃 兰州 730000;<sup>2.</sup>中国科学院大学, 北京 100049

收稿日期: 2019-09-17

  网络出版日期: 2020-08-28

基金资助

国家自然科学基金项目(41675014)

Atmospheric Surface-layer Gravity Waves over the Loess Plateau: Observational Identification and Characterization

  • Shulin ZHANG ,
  • Jinbei CHEN ,
  • Ye YU ,
  • Suping ZHAO ,
  • Wei JIA
Expand
  • <sup>1.</sup>Key Laboratory of Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, Gansu, China;<sup>2.</sup>University of Chinese Academy of Science, Beijing 100049, China

Received date: 2019-09-17

  Online published: 2020-08-28

摘要

利用平凉陆面过程与灾害天气观测研究站2012年5 -7月夜间近地面层观测资料, 针对黄土高原塬区夜间不同风速和下垫面粗糙度条件, 辨识塬区重力波, 揭示重力波的频段, 并对比研究了风速和粗糙度变化对该频段的影响。结果表明, 平凉站塬区的夜间近地面层易于产生重力波, 且即使整体Richardson远小于0.25时, 也可以观测到重力波。受塬区下垫面特征影响, 重力波的波动周期主要集中于60~110 s, 同时随着观测高度的降低, 重力波波动周期只存在10 s左右的变化。

本文引用格式

张署林 , 陈晋北 , 余晔 , 赵素平 , 贾伟 . 黄土高原塬区近地面层重力波的辨识及其特征研究[J]. 高原气象, 2020 , 39(4) : 729 -739 . DOI: 10.7522/j.issn.1000-0534.2020.00010

Abstract

To identify gravity waves, determine their frequency band and reveal the variation of frequency band caused by wind speed and roughness, observation of surface layer have been done at night from May to July in 2012 at Pingliang Land Surface Process & Severe Weather Research Station.The results show that the tableland, where the observation station is located, is prone to cause gravity wave in surface layer under stable stratification conditions at night.Moreover, the gravity waves can be observed even when the total Richardson is way below 0.25.Affected by the tableland, the fluctuation period of the gravity wave mainly focuses on 60~110 s.Meanwhile, with the decrease of the observation height, the fluctuation period of the gravity wave only varies for about 10 s.

参考文献

[1]Balsley B, Fritts D, Frehlich R, al et, 2002.Up-gully flow in the great plains region: A mechanism for perturbing the nighttime lower atmosphere?[J].Geophysical Research Letters, 29(19): 37-40.DOI: 10.1029/2002GL015435.
[2]Belcher S E, Wood N, 2006.Form and wave drag due to stably stratified turbulent flow over low ridges [J].Quarterly Journal of the Royal Meteorological Society, 122(532): 863-902.DOI: 10. 1002/qj.49712253205.
[3]Brown A R, Athanassiadou M, Wood N, 2006.Topographically induced waves within the stable boundary layer [J].Quarterly Journal of the Royal Meteorological Society, 129(595): 3357-3370.DOI: 10.1256/qj.02.176.
[4]Carpenter J R, Tedford E W, Heifetz E, al et, 2011.Instability in stratified shear flow: Review of a physical interpretation based on interacting waves [J].Applied Mechanics Reviews, 64(6): 1001-1017.DOI: 10.1115/1.4007909.
[5]Chemel C, Staquet C, Largeron Y, 2009.Generation of internal gravity waves by a katabatic wind in an idealized alpine valley [J].Meteorology and Atmospheric Physics, 103(1/4): 187-194.DOI: https: //doi.org/10.1007/s00703-009-0349-4.
[6]Einaudi F, Finnigan J J, 1981a.The interaction between an internal gravity-wave and the planetary boundary layer.Part II: Effect of the wave on the turbulence structure [J].Quarterly Journal of the Royal Meteorological Society, 107(454): 807-832. DOI: 10. 1256/smsqj.45404.
[7]Einaudi F, Finnigan J J, 1981b.The interaction between an internal gravity wave and the planetary boundary layer.Part I: The linear analysis [J].Quarterly Journal of the Royal Meteorological Society, 107(454): 793-806. DOI: 10.1002/qj.49710745404.
[8]Einaudi F, Finnigan J J, 1993.Wave-turbulence dynamics in the stably stratified boundary layer [J].Journal of the Atmospheric Sciences, 50(13): 1841-1864.DOI: 10.1175/1520-0469(1993)050<1841: WTDITS>2.0.CO; 2.
[9]Finnigan J J, 1999.A note on wave-turbulence interaction and the possibility of scaling the very stable boundary layer [J].Boundary-Layer Meteorology, 90(3): 529-539.DOI: 10.1023/a: 1001756912935.
[10]Finnigan J J, Einaudi F, Fua D, 1984.The interaction between an internal gravity wave and turbulence in the stably-stratified nocturnal boundary layer [J].Journal of the Atmospheric Sciences, 41(16): 807-832.DOI: 10.1175/1520-0469.(1984)0412.0.CO; 2.
[11]Finnigan J J, Einaudi F, 1981.The interaction between an internal gravity wave and the planetary boundary layer.Part II: Effect of the wave on the turbulence structure [J].Quarterly Journal of the Royal Meteorological Society, 107(454): 807-832.DOI: 10. 1002/qj.49710745405.
[12]Fitzjarrald D R, Moore K E, 1990.Mechanisms of nocturnal exchange between the rain forest and the atmosphere [J].Journal of Geophysical Research, 95(D10): 16839-16850.DOI: 10.1029/JD095iD10p16839.
[13]Fua D, Chimonas G, Einaudi F, al et, 2010. An analysis of wave-turbulence interaction [J].Journal of the Atmospheric Sciences, 39(11): 2450-2463. DOI: http: //dx.doi.org/10.1175/1520-0469(1982)0392.0.CO; 2.
[14]Gossard E E, Gaynor J E, Zamora R J, al et, 1985.Fine structure of elevated stable layers observed by sounder and in situ tower sensors [J].Journal of the Atmospheric Sciences, 42(20): 2156-2169.DOI: 10.1175/ 1520-0469 (1985)042<2156: foeslo>2.0.co; 2.
[15]Guckenheimer J, Holmes P, 1983.Nonlinear oscillations, dynamical systems, and bifurcations of vector fields [M].Springer, New York, 462.[2019-09-10].http: //dx.doi.org/10.1007/978-1-4612-1140-2.
[16]Gupta K S, Sunil T, 2001.Thunderstorm generated wave disturbance in the atmospheric boundary layer—a case study [J].Journal of the Atmospheric Sciences, 63(15): 1585-1592.
[17]Hardy K R, Reed R J, Mather G K, 2010.Observation of Kelvin-Helmholtz billows and their mesoscale environment by radar, instrumented aircraft, and a dense radiosonde network [J].Quarterly Journal Royal Meteorological Society, 99(420): 279-293.DOI: 10.1002/qj.49709942007.
[18]Hu X, Lee X, Stevens D E, al et, 2002.A numerical study of nocturnal wavelike motion in forests [J].Boundary-Layer Meteorology, 102(2): 199-223.DOI: 10.1023/a: 1013167228992.
[19]Jordan A R, 1972.Atmospheric gravity waves from winds and storms [J].Journal of the Atmospheric Sciences, 29(3): 445-456.DOI: 10.1175/ 1520-0469 (1972) 029<0445: agwfwa>2.0.co; 2.
[20]Lee X, Neumann H H, Hartog G D, al et, 1997.Observation of gravity waves in a boreal forest [J].Boundary-Layer Meteorology, 84(3): 383-398.DOI: 10.1023/a: 1000454030493.
[21]Mahrt L, 1999.Stratified atmospheric boundary layers [J].Boundary-Layer Meteorology, 90(3): 375-396.DOI: 10.1023/a: 1001765727956.
[22]Nappo C J, 2012.An Introduction to Atmospheric Gravity Waves [M].2nd.Academic Press, 400.
[23]Nappo C J, Chimonas G, 1992.Wave exchange between the ground surface and a boundary-layer critical level [J].Journal of the Atmospheric Sciences, 49(13): 1075-1091.DOI: 10.1175/1520-0469(1992)0492.0.CO; 2.
[24]Nappo C J, Johansson P E, 1999.Summary of the L?vanger international workshop on turbulence and diffusion in the stable planetary boundary layer.Boundary-Layer Meteorol [J].Boun-dary-Layer Meteorology, 90(3): 345-374.DOI: 10.1023/A: 1026458421572.
[25]Rees J M, Mobbs S D, 1988.Studies of internal gravity waves at Halley Base, Antarctica, using wind observations [J].Quarterly Journal Royal Meteorological Society, 114(482): 939-966.DOI: 10.1002/qj.49711448206.
[26]Stull R B, 1991.An introduction to boundary layer meteorology(in Chinese)[M].Beijing: Meteorology, 457.
[27]Sun J, Mahrt L, Nappo C, al et, 2015a.Wind and Temperature Oscillations Generated by Wave-Turbulence Interactions in the Stably Stratified Boundary Layer [J].Journal of the Atmospheric Sciences, 72(4): 1484-1503.DOI: 10.1175/JAS-D-14-0129.1.
[28]Sun J, Nappo C J, Mahrt L, al et, 2015b, Review of wave-turbulence interactions in the stable atmospheric boundary layer [J].Reviews Geophysics, 53(3): 956-993, DOI: 10.1002/2015RG000487.
[29]Teixeira M A C, Miranda P M A, 2004.The effect of wind shear and curvature on the gravity wave drag produced by a ridge [J].Journal of the Atmospheric Sciences, 61(21): 2638-2643.DOI: 10.1175/JAS3282.1.
[30]Thorpe S A, 1987.Transitional phenomena and the development of turbulence in stratified fluids: A review[J].Journal of Geophysical Research, 92(C5): 5231-5248.DOI: 10.1029/jc092ic05p05231.
[31]Turner J S, 1973, Buoyancy effects in fluids[M], Cambridge University Press.Cambridge, GB, 367.
[32]Viana, S, Terradellas E, Yagüe C, 2010.Analysis of gravity waves generated at the top of a drainage flow [J].Journal of the Atmospheric Sciences, 67(12): 3949-3966.DOI: 10.1175/2010JAS3508.1.
[33]Vosper S B, Brown A R, 2007.The effect of small-scale hills on orographic drag [J].Quarterly Journal of the Royal Meteorological Society, 133(627): 1345-1352.DOI: 10.1002/qj.101.
[34]Wilczak J M, Oncley S P, Stage S A, 2001.Sonic anemometer tilt correction algorithms [J].Boundary-Layer Meteorology, 99(1): 127-150.
[35]Yagüe C, Maqueda G, Rees J M, 2001.Characteristics of turbulence in the lower atmosphere at Halley IV station, Antarctica [J].Dynamics of Atmospheres and Oceans, 34(2/4): 205-223.DOI: 10.1016/s0377-0265(01)00068-9.
[36]姜平, 刘晓冉, 朱浩楠, 等, 2019.复杂地形下局地山谷风环流的理想数值模拟[J].高原气象, 38(6): 1272-1282.DOI: 10.7522/j.issn.1000-0534.2019.00019.
[37]刘辉志, 张伯寅, 桑建国, 等, 2000.不稳定边界层下地形重力内波[J], 大气科学, 24(4): 509-518.
[38]刘式达, 潘乃先, 陈家宜, 等, 1988.波和湍流的相互作用[J].大气科学, 12(1): 1-7.
[39]马欣, 张堂堂, 陈金雷, 2019.黄土高原典型塬区土壤热性质变化特征研究[J].高原气象, 38(3): 507-517.DOI: 10.7522/j.issn.1000-0534.2018.00158.
[40]马英赛, 孟宪红, 韩博, 等, 2019.黄土高原土壤湿度对地表能量和大气边界层影响的观测研究[J].高原气象, 38(4): 705-715.DOI: 10.7522/j.issn.1000-0534.2019.00036.
[41]桑建国, 王保民, 孙向明, 2002.对流云街激发的重力波和波动阻力[J].气候与环境研究, 7(1): 114-120.DOI: 10.3969/j.issn.1006-9585.2002.01.011.
[42]王丹云, 吕世华, 韩博, 等, 2018.黄土高原春季植被变化分布与变化特征及其对春旱的响应研究[J].高原气象, 37(5): 1208-1219.DOI: 10.7522/j.issn.1000-0534.2018.00033.
[43]徐自为, 刘绍民, 宫丽娟, 等, 2008.涡动相关仪观测数据的处理与质量评价研究[J].地球科学进展, 23(4): 357-370.DOI: 10.3321/j.issn: 1001-8166.2008.04.005.
[44]朱利华, 周伟灿, 邹兰军, 2004.垂直切变流中非线性重力波及其相互作用[J].南京气象学院学报, 27(3): 405-412.DOI: 10.3969/j.issn.1674-7097.2004.03.014.
文章导航

/