针对2016年7月26日发生在江苏北部的一次弱天气尺度强迫下强对流过程, 选用WRF(Weather Research and Forecasting)模式中具有一定代表性的5种云微物理参数化方案进行模拟。结果表明, 只有NSSL 1-momlfo方案能够较好地再现回波的位置、 强度及层云区, 其余四种方案模拟的回波与实况存在不同程度的差异。原因是不同方案模拟的热动力结构、 水成物及相变潜热的空间分布存在差异, 其中NSSL方案模拟的上升气流更强劲, 冷池范围也更集中; 水成物集中在一个狭窄的水平区域, 雨水在中低层较多, 雪粒子和霰粒子在中高层较多; 与此相应, NSSL方案相变潜热释放最多, 进一步加强了上升运动。
Five typical cloud microphysics parameterization schemes, i.e.NSSL 1-momlfo scheme, Morrison 2-moment scheme, Thompson scheme, WDM6(WRF Double-Moment 6-class) and HUJI spectral bin microphysics (FAST), in the WRF (Weather Research and Forecasting) model were used to simulate a severe convective process under weak synoptic-scale forcing in the north of Jiangsu Province on July 26, 2016.The results show that only the NSSL 1-momlfo scheme can reproduce this severe convective process well, including the location, the intensity of the strong convective echo region and the stratiform cloud region, while the simulated radar echoes with Morrison, Thompson, WDM6 and HUJI schemes significantly differ from the real observations.The reason for the differences is investigated by comparing the effects of different schemes on the dynamic and thermodynamic structure of strong convection and the spatial distribution of hydrometeors and latent heat.It is found that the NSSL scheme shows the strongest updraft, although low-level wind convergence is simulated with the NSSL, WDM6 and HUJI schemes.Meanwhile, more concentrated cold pool is found out with the NSSL scheme, while the cold pool distributes over a large area in both the WMD6 and HUJI scheme, which is consistent with wider and stronger simulated radar echo.Conversely, the cold pool is distributed in a narrow region in the Morrison scheme and Thompson scheme, especially in the Morrison scheme, where almost no cold pool is found out.Furthermore, the distribution of hydrometeors with the NSSL scheme is concentrated in a horizontal narrow area, with more rainwater in the middle and lower layers and more snow particles and graupel particles in the middle and upper layers.The distribution of hydrometeors in the rest four schemes is quite different from that in the NSSL scheme: almost no rain, cloud droplets and ice in the Morrison scheme; except for snow distributed in a larger area, no ice and graupel, and almost no rain and cloud droplets in the Thompson scheme; the wide distribution of rain, snow and graupel with several large value centers but almost no cloud ice in the WDM6 scheme; a wide distributed snow and ice in HUJI scheme.Meanwhile, the NSSL scheme produces the most latent heat, resulting in a strengthened updraft, while the latent heat in the other four schemes is less than the NSSL scheme in both intensity and spatial distribution.And furthermore, it is the least in the Morrison scheme.
[1]Bryan G H, Morrison H, 2012.Sensitivity of a simulated squall line to horizontal resolution and parameterization of microphysics[J].Monthly Weather Review, 140(1): 202-225.
[2]Dudhia J, 1989.Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model[J].Journal of the Atmospheric Sciences, 46(20): 3077-3107.
[3]Gilmore M S, Straka J M, Rasmussen E N, 2004.Precipitation and evolution sensitivity in simulated deep convective storms: Comparisons between liquid-only and simple ice and liquid phase microphysics[J].Monthly Weather Review, 132(8): 1897-1916.
[4]Hong S Y, Juang H M H, Zhao Q Y, 1998.Implementation of prognostic cloud scheme for a regional spectral model[J].Monthly Weather Review, 126(10): 2621-2639.
[5]Hong S Y, Dudhia J, Chen S H, 2004.A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation[J].Monthly Weather Review, 132(1): 103-120.
[6]Khain A, Lynn B, Dudhia J, 2010.Aerosol effects on intensity of landfalling hurricanes as seen from simulations with the WRF model with spectral bin microphysics[J].Journal of the Atmospheric Sciences, 67(2): 365-384.
[7]Li X W, Tao W K, Khain A P, al et, 2009a.Sensitivity of a cloud-resolving model to bulk and explicit bin microphysical schemes.Part I: Comparisons[J].Journal of the Atmospheric Sciences, 66(1): 3-21.
[8]Li X W, Tao W K, Khain A P, al et, 2009b.Sensitivity of a cloud-resolving model to bulk and explicit bin microphysical schemes.Part II: Cloud microphysics and storm dynamics interactions[J].Journal of the Atmospheric Sciences, 66(1): 22-40.
[9]Lim K S S, Hong S Y, 2010.Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models[J].Monthly Weather Review, 138(5): 1587-1612.
[10]Lin Y L, Farley R D, Orville H D, 1983.Bulk parameterization of the snow field in a cloud model[J].Journal of Climate and Applied Meteorology, 22(6): 1065-1092.
[11]Luo Y L, Wang Y J, Wang H Y, al et, 2010.Modeling convective-stratiform precipitation processes on a Mei-Yu front with the Weather Research and Forecasting model: Comparison with observations and sensitivity to cloud microphysics parameterizations[J].Journal of Geophysical Research: Atmospheres, 115(D18): 0148-0227.
[12]Min K H, Choo S, Lee D, al et, 2015.Evaluation of WRF cloud microphysics scheme using radar observations[J].Weather and Forecasting, 30(6): 1571-1589.
[13]Morrison H, Thompson G, Tatarskii V, 2009.Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes[J].Monthly Weather Review, 137(3): 991-1007.
[14]Reisner J, Rasmussen R M, Bruintjes R T, 1998.Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model[J].Quarterly Journal of the Royal Meteorological Society, 124(548): 1071-1107.
[15]Rotunno R, Klemp J B, Weisman M L, 1988.A theory for strong, long-lived squall lines[J].Journal of the Atmospheric Sciences, 45(3): 463-485.
[16]Stoelinga M T, 2005.Simulated equivalent reflectivity factor as currently formulated in RIP: Description and possible improvements[DB/OL].[2019-09-30].http: //citeseerx.ist.psu.edu/vie wdoc/ download?doi=10.1.1.522.925&rep=rep1&type=pdf.
[17]Tao W K, Simpson J, McCumber M, 1989.An ice-water saturation adjustment[J].Monthly Weather Review, 117(1): 231-235.
[18]Thompson G, Field P R, Rasmussen R M, al et, 2008.Explicit forecasts of winter precipitation using an improved bulk microphysics scheme.part II: Implementation of a new snow parameterization[J].Monthly Weather Review, 136(12): 5095-5115.
[19]Thorpe A J, Miller M J, Moncrieff M W, 1982.Two-dimensional convection in non-constant shear: A model of mid-latitude squall lines[J].Quarterly Journal of the Royal Meteorological Society, 108(458): 739-762.
[20]Yin L, Ping F, Mao J H, 2017.A comparative study between bulk and bin microphysical schemes of a simulated squall line in east China[J].Atmospheric Science Letters, 18(5): 195-206.
[21]陈明轩, 王迎春, 2012.低层垂直风切变和冷池相互作用影响华北地区一次飑线过程发展维持的数值模拟[J].气象学报, 70(3): 371-386.
[22]曹倩, 张述文, 曹帮军, 等, 2016.超强不稳定和弱切变环境下一次飑线过程的雷达资料同化与分析[J].热带气象学报, 32(5): 645-655.
[23]陈英英, 唐仁茂, 李德俊, 等, 2013.利用雷达和卫星资料对一次强对流天气过程的云结构特征分析[J].高原气象, 32(4): 1148-1156.DOI: 10.7522/j.issn.1000-0534.2012.00108.
[24]况祥, 银燕, 陈景华, 等, 2018.基于WRF模式和CloudSat卫星资料对黄淮下游一次强对流天气过程的诊断分析和数值模拟[J].气象科学, 38(3): 331-341.
[25]李娜, 冉令坤, 高守亭, 2013.华东地区一次飑线过程的数值模拟与诊断分析[J].大气科学, 37(3): 595-608.
[26]陶局, 易笑园, 赵海坤, 等, 2019.一次飑线过程及其受下垫面影响的数值模拟[J].高原气象, 38(4): 756-772.DOI: 10.7522/j.issn.1000-0534.2019.00035.
[27]许焕斌, 2015.人工影响天气科学技术问答——探索理论通往应用之路[M].北京: 气象出版社, 157-158.
[28]肖现, 陈明轩, 高峰, 等, 2015.弱天气系统强迫下北京地区对流下山演变的热动力机制[J].大气科学, 39(1): 100-124.
[29]张弛, 王咏青, 廖玥, 等, 2019.初始场与云微物理参数方案在飑线数值模拟中的对比研究[J].高原气象, 38(2): 410-420.DOI: 10.7522/j.issn.1000-0534.2018.00084.
[30]周林帆, 张述文, 李少英, 等, 2019.城市下垫面对西安地区一次强降水的影响[J].高原气象, 38(4): 773-780.DOI: 10.7522/j.issn.1000-0534.2018.00117.
[31]朱平, 俞小鼎, 2019.青藏高原东北部一次罕见强对流天气的中小尺度系统特征分析[J].高原气象, 38(1): 1-13.DOI: 10. 7522/j.issn.1000-0534.2018.00070.
[32]郑永光, 张小玲, 周庆亮, 等, 2010.强对流天气短时临近预报业务技术进展与挑战[J].气象, 36(7): 33-42.