Based on the conventional observational data, the TBB data of FY-2G satellite, data of Doppler weather radar, wind profiler radar, ground-based microwave radiometer, and NCEP/NCAR reanalysis data with 1°×1° spatial resolution, the mesoscale system and atmospheric vertical structure of three typical heavy rain processes occurred on 9 June, 27 June 2015 and from 2 to 3 October 2016 (referred to as Process 1, Process 2 and Process 3, respectively) in Urumqi were studied.The results are as follows: Process 1 and Process 2 were the strong convective storm, which were generated in the southwest airflow before the high-pressure ridge and the southwest airflow in the front of the low-value system with short-term heavy precipitation, respectively; Process 3 was the steady rainstorm, which was the longer and smoother occurred in the westward airflow in front of the trough.Process 1 and Process 2 were more favorable for the occurrence of short-term heavy precipitation during heavy rain due to more unstable and more humid at the lower atmosphere than Process 3.The strong convective storm were caused by β-mesoscale convective clouds, which were relatively isolated, small in scale, rapid in generation and development, and short in life history as well as the γ-mesoscale convective system, which were small in scale, fast in growth and rapid in movement, and there were convergence of wind speed at intermediate and low-level and convergence at low-level and divergence at high-level in radial velocity; The steady rainstorm was caused long-term and large-scale laminated hybrid cloud, echoes of stratified hybrid cloud and shear lines.Wind profiler radar and microwave radiometer could meticulously describe the evolution of wind field and humidity during heavy rain, the high and low wind fields showed reverse and clockwise rotation with height, and the cold and warm advection enhanced the instability of the atmosphere before the start of heavy rain;When the rainstorm is approaching 0.5~1 h, the obvious increase of wind speed at different altitudes and the sharp development of relative humidity could be used as the early warning for the beginning of heavy rain; vertical wind shear was obvious during the rainstorm and the water vapor saturation zone developing in the form of fluctuations; horizontal wind field and relative humidity change more severely during the strong convective rainstorm.At the same time, when the water vapor saturation zone developing to the highest position in the heavy rain process, short-term heavy precipitation occurred.
[1]Chan P W, 2009.Performance and application of a multi-wavelength, ground based microwave radiometer in intense convective weather [J].Meteorologische Zeitschrift, 18(3): 253-265.
[2]Cifelli R, Rutledge S A, 1994.Vertical motion structure in maritime continent mesoscale, convective systems: results from 50-MHz profiler [J].Journal of the Atmospheric Sciences, 51(18): 2631-2652.
[3]Ecklund W L, Gage K S, Williams C R, 1995.Tropical precipitation studies using a 915-MHz wind profiler [J].Radio Science, 30(4): 1055-1064.
[4]Feltz W F, Mecikalski J R, 2002.Monitoring high-temporal-resolution convective stability indices using the ground-based atmospheric emitted radiance interferometer (AERI) during the 3 May 1999 Oklahoma-Kansas tornado outbreak [J].Weather Forecast, 17(3): 445-455.
[5]Friedrich K, Lundquist J K, Aitken M, al et, 2012.Stability and turbulence in the atmospheric boundary layer: A comparison of remote sensing and tower observations [J].Geophysical Research Letters, 39(3): 1-6.
[6]Kanofsky L, Chilson P, 2008.An analysis of errors in drop size distribution retrievals and rain bulk parameters with a UHF wind profiling radar and a two-dimensional video disdrometer [J].Journal of Atmospheric and Oceanic Technology, 25(12): 2282-2292.
[7]Mattioli V, Westwater E R, Cimini D, al et, 2007.Analysis of radiosonde and ground-based remotely sensed PWV data from the 2004 North Slope of Alaska Arctic winter radiometric experiment [J].Journal of Atmospheric and Oceanic Technology, 24(3): 415-431.
[8]Peter T M, Jameson A R, Thomas D K, al et, 2001.A comparison between polarimetric radar and wind profiler observations of precipitation in tropical showers [J].Journal of Applied Meteorology, 40(10): 1702-1717.
[9]Peter T M, Jameson A R, Thomas D K, al et, 2002.Combined wind profiler polarimetric radar studies of the vertical motion and microphysical characteristics of tropical sea-breeze thunder storms [J].Monthly Weather Review, 130(9): 2228-2239.
[10]Rottger J, 1980.Structure and dynamics of the stratosphere and mesosphere revealed by VHF radar investigations [J].Pure and Applied Geophysics, 118(1): 494-527.
[11]Rajopadhyaya D K, Avery S A, May P T, al et, 1999.Comparison of precipitation estimation using single and dual-frequency wind profilers [J].Journal of Atmospheric and Oceanic Technology, 16(1): 165-173.
[12]陈春艳, 孔期, 李如琦, 2012.天山北坡一次特大暴雨过程诊断分析[J].气象, 38(1): 72-80.
[13]丁一汇, 1993.1991年江淮流域持续性特大暴雨研究[M].北京: 气象出版社, 249-254.
[14]高守亭, 刘璐, 李娜, 2013.近几年中尺度动力学研究进展[J].大气科学, 37(2): 319-330.
[15]郭丽君, 郭学良, 2015.利用地基多通道微波辐射计遥感反演华北持续性大雾天气温、 湿度廓线的检验研究[J].气象学报, 73(2): 368-381.
[16]黄建平, 何敏, 阎虹如, 等, 2010.利用地基微波辐射计反演兰州地区液态云水路径和可降水量的初步研究[J].大气科学, 34(3): 548-558.
[17]孔期, 郑永光, 陈春艳, 2011.乌鲁木齐7·17暴雨的天气尺度与中尺度特征[J].应用气象学报, 22(1): 12-22.
[18]陆汉城, 2000.中尺度天气原理和预报(第二版)[M].北京: 气象出版社, 1-3.
[19]刘惠云, 王晓梅, 肖书君, 等, 2007.乌鲁木齐市近40多年降水演变特征[J].干旱区研究, 24(6): 785-789.
[20]刘淑媛, 郑永光, 陶祖钰, 2003.利用风廓线雷达资料分析低空急流的脉动与暴雨关系[J].热带气象学报, 19(3): 285-290.
[21]孙继松, 何娜, 郭锐, 等, 2013.多单体雷暴的形变与列车效应传播机制[J].大气科学, 37(1): 137-148.
[22]孙淑清, 周玉淑, 2007.近年来我国暴雨中尺度动力分析研究进展[J].大气科学, 31(6): 1171-1188.
[23]陶诗言, 1980.中国之暴雨[M].北京: 科学出版社.
[24]王东海, 杨帅, 2009.一个干侵入参数及其应用[J].气象学报, 67(4): 522-529.
[25]王世杰, 杨莲梅, 史玉光, 2012.乌鲁木齐1991—2010年降雨特征分析[J].中国沙漠, 32(2): 509-516.
[26]万蓉, 周志敏, 崔春光, 等, 2011.风廓线雷达资料与探空资料的对比分析[J].暴雨灾害, 30(2): 130-136.
[27]吴国雄, 蔡雅萍, 庄晓菁, 1995.湿位涡和倾斜涡度发展[J].气象学报, 53(4): 387-405.
[28]许敏, 张瑜, 张绍恢, 2016.风廓线雷达资料在冀中一次强降水天气预报中的应用[J].干旱气象, 34(5): 898-905.
[29]谢泽明, 周玉淑, 杨莲梅, 2018.新疆降水研究进展综述[J].暴雨灾害, 37(3): 204-212.
[30]杨莲梅, 2003.南亚高压突变引起的一次新疆暴雨天气研究[J].气象, 29(8): 21-25.
[31]杨莲梅, 张广兴, 2004.阿克苏北部绿洲强对流暴雨与冰雹红外云图特征对比分析[J].干旱气象, 22(3): 22-25.
[32]杨莲梅, 李霞, 张广兴, 2011.新疆夏季强降水研究若干进展及问题[J].气候与环境研究, 16 (2): 188-198.
[33]杨莲梅, 张云惠, 汤浩, 2012.2007年7月新疆三次暴雨过程的水汽特征分析[J].高原气象, 31(4): 963-973.
[34]杨莲梅, 刘晶, 2018.新疆水汽研究若干进展[J].自然灾害学报, 27(2): 1-13.
[35]庄薇, 刘黎平, 王楠, 2006.新疆地区一次对流性降水的三维中尺度风场研究[J].应用气象学报, 17(4): 444-451.
[36]赵思雄, 陶祖钰, 孙建华, 等, 2004.长江流域梅雨锋暴雨机理的分析研究[M].北京: 气象出版社.
[37]赵庆云, 张武, 陈晓燕, 等, 2018.一次六盘山两侧强对流暴雨中尺度对流系统的传播特征[J].高原气象, 37(3): 767-776.DOI: 10.7522/j.issn.1000-0534.2017.00068.
[38]曾勇, 杨莲梅, 2016.中亚低涡背景下新疆连续短时强降水特征分析[J].沙漠与绿洲气象, 10(4): 67-72.
[39]曾勇, 杨莲梅, 2017a.南疆西部一次暴雨强对流过程的中尺度特征分析[J].干旱气象, 35(3): 475-484.
[40]曾勇, 杨莲梅, 2017b.南疆西部两次短时强降水天气中尺度特征对比分析[J].暴雨灾害, 36(5): 410-421.
[41]曾勇, 杨莲梅, 2018.新疆西部一次极端暴雨事件的成因分析[J].高原气象, 37(5): 1220-1232.DOI: 10.7522/j.issn.1000-0534.2018.00014.
[42]曾勇, 周玉淑, 杨莲梅, 2019.新疆西部一次大暴雨形成机理的数值模拟初步分析[J].大气科学, 43(2): 372-388.
[43]张家宝, 邓子风, 1987.新疆降水概论[M].北京: 气象出版社.
[44]张书萍, 祝从文, 2011.2009年冬季新疆北部持续性暴雪的环流特征及其成因分析[J].大气科学, 35 (5): 833-846.
[45]周芯玉, 廖菲, 孙广凤, 2015.广州两次暴雨期间风廓线雷达观测的低空风场特征[J].高原气象, 34(2): 526-533.DOI: 10. 7522/j.issn.1000-0534.2013.00188.
[46]朱平, 俞小鼎, 2019.青藏高原东北部一次罕见强对流天气的中小尺度系统特征分析[J].高原气象, 38(1): 1-13.DOI: 10. 7522/j.issn.1000-0534.2018.00070.