论文

基于ECMWF模式的定量降水客观订正方法

  • 郑婧 ,
  • 夏侯杰 ,
  • 陈娟 ,
  • 孙素琴
展开
  • 江西省气象台, 江西 南昌 330096

收稿日期: 2019-08-12

  网络出版日期: 2020-08-28

基金资助

国家重点研发计划重点专项(2018YFC1507601);江西省气象局重点科研项目(主客观预报产品融合技术研究, 江西城镇气象要素预报技术研究);中国气象局预报员专项(CMAYBY2019-060)

Objective Correction Method for Quantitative Precipitation Forecasting Based on ECMWF Model

  • Jing ZHENG ,
  • Houjie XIA ,
  • Juan CHEN ,
  • Suqin SUN
Expand
  • Jiangxi Province Meteorological Observatory, Nanchang 330096, Jiangxi, China

Received date: 2019-08-12

  Online published: 2020-08-28

摘要

基于ECMWF高分辨率数值模式物理量诊断产品, 利用逻辑回归法开展江西定量降水客观预报试验, 并进行检验和改进。结果表明: (1)初始方案中直接提取预报因子单站建模所得到的预报结果较数值模式原始输出降水改进效果有限, 但在经过降水分区优化、 多倍数暴雨样本扩充、 本地气候频率降水订正等改进步骤后, 各等级降水预报均较初始方案TS有不同程度的提高。(2)2018年降水试验结果表明, 改进方案的晴雨、 各等级降水预报TS均高于EC模式降水和预报员, 其中大雨、 暴雨以上量级相对数值模式以及预报员的订正提高率达到1/4~1倍。(3)本方案预报产品对强天气尺度强迫下、 落区相对集中的暴雨天气有较好的识别能力; 而在暖区暴雨、 盛夏副热带高压边缘暴雨、 高架对流等强降水落区分散且范围较小的情况下, 或是当模式对天气形势、 主雨带预报有明显系统性偏差时, 无法有明显改进。

本文引用格式

郑婧 , 夏侯杰 , 陈娟 , 孙素琴 . 基于ECMWF模式的定量降水客观订正方法[J]. 高原气象, 2020 , 39(4) : 830 -839 . DOI: 10.7522/j.issn.1000-0534.2019.00116

Abstract

Based on ECMWF model, quantitative precipitation forecasting experiment was carried out with logistic model.The results show that: (1) Compared with EC model, precipitation forecasting modeled by single-station will provide limited benefits.After optimized precipitation division、 enlarged rainstorm samples、 bias correction for local climatic precipitation, TS scores has been improved.(2) The objective quantitative precipitation has been applied in grid forecasting in Jiangxi in 2018.Results show that the TS scores of rainfall and different-class precipitation are much better than EC model and forecasters, especially for heavy rain and torrential rain, which are 25%~1 times higher.(3) The products of this scheme has better recognition for rainstorm which are concentrated and forced by strong synoptic-scale systems.While it can't be accurate predicted in the situation of dispersive precipitation, which happened in warm sector、 edged of sub-tropical high in midsummer, etc.When the model has obvious systematic deviation to weather situation and main rain region, the objective correction can't improve the model results either.

参考文献

[1]Applequist S, Gahrs G E, Pfeffer R L, 2002.Comparison of methodologies for probabilistic quantitative precipitation forecasting[J].Weather and Forecasting, 17(4): 783-799.
[2]Antolik M S, 2000.An overview of the National Weather Service's centralized statistical quantitative precipitation forecast[J].Journal of Hydrology, 239(1/4): 306-337.
[3]Ananthakrishnan R, Soman M K, 1989.Statistical distribution of daily rainfall and its association with the coefficient of variation of rainfall series[J].International Journal Climatology, 9(5): 485-500.
[4]Doswell C A, 1996.Flash flood forecasting: An ingredient-based methodology[J].Weather and Forecasting, 11(4): 560-581.
[5]Elbert E E, 2001.Ability of a poor man's ensemble to predict the probability and distribution of precipitation[J].Monthly Weather Review, 129(10): 2461-2479.
[6]Gahrs G E, Applequist S, Pfeffer R L, al et, 2003.Improved results for probabilistic quantitative precipitation forecasting[J].Weather and Forecasting, 18(5): 879-890.
[7]Husak G J, Michaelsen J, Funk C, 2007.Use of the gamma distribution to represent monthly rainfall in Africa for drought monitoring applications[J].International Journal Climatology, 27(7): 935-944.
[8]Stensrud D J, Yussouf N, 2007.Reliable probabilistic quantitative precipitation forecasts from a short-range ensemble forecasting system[J].Weather and Forecasting, 22(1): 3-17.
[9]Scheuerer M, Hamill T M, 2015.Statistical post-processing of ensemble precipitation forecasts by fitting censored, shifted Gamma distributions[J].Monthly Weather Review, 143(11): 4578-4596.
[10]Wilks D S, Hamill T M, 2007.Comparison of ensemble-MOS methods using GFS reforecasts [J].Monthly Weather Review, 135(6): 2379-2390.
[11]Zhu Y J, Luo Y, 2015.Precipitation calibration based on the frequency-matching method[J].Weather and Forecasting, 30(5): 1109-1124.
[12]毕宝贵, 代刊, 王毅, 等, 2016.定量降水预报技术进展[J].应用气象学报, 27(5): 534-549.
[13]白晓平, 靳双龙, 王式功, 等, 2018.基于Logistic回归和多指标叠加的短时强降水预报模型[J].气象科学, 38(4): 553-558.
[14]白永清, 陈诚, 何明琼, 2016.利用Logistic回归方法的高速桥(路)面结冰风险等级预警模型[J].气象科技, 44(2): 336-340.
[15]代刊, 朱跃建, 毕宝贵, 2018.集合模式定量降水预报的统计后处理技术研究综述[J].气象学报, 76(4): 493-510.
[16]傅朝, 刘维成, 杨晓军, 等, 2019.强对流临近预警中集合预报成员的即时分析——以陇东一次暴雨过程ECMWF集合预报应用为例[J].高原气象, 38(2): 143-155.DOI: 10. 7522/j.issn. 1000-0534.2018.00061.
[17]纪玲玲, 王昌雨, 张志华, 2003.Logistic回归及其在概率降水预报中的应用[J].解放军理工大学学报(自然科学版), 4(5): 91-94.
[18]李俊, 杜钧, 陈超君, 2014.降水偏差订正的频率(或面积)匹配方法介绍和分析[J].气象, 40(5): 580-588.
[19]马申佳, 陈超辉, 何宏让, 等, 2018.基于BGM的对流尺度集合预报试验及其检验[J].高原气象, 37(2): 495-504.DOI: 10. 7522/j.issn.1000-0534.2017.00073.
[20]潘留杰, 张宏芳, 陈小婷, 等, 2017.ECMWF集合预报在中国中部地区的降水概率预报性能评估[J].高原气象, 36(1): 138-147.DOI: 10.7522/j.issn.1000-0534.2016.00014.
[21]孙靖, 程光光, 张小玲, 2015.一种改进的数值预报降水偏差订正方法及应用[J].应用气象学报, 26(2): 173-184.
[22]孙素琴, 许爱华, 郑婧, 等, 2016.江西省汛期暴雨时空分布及区域性暴雨分区[J].气象与减灾研究, 39(2): 90-97.
[23]万夫敬, 袁慧玲, 宋金杰, 等, 2012.南京地区降水预报研究[J].南京大学学报(自然科学), 48(4): 513-525.
[24]熊敏铨, 2017.基于集合预报系统的日最高和最低气温预报[J].气象学报, 72(2): 211-222.
[25]徐晶, 张国平, 张芳华, 等, 2007.基于Logistic回归的区域地质灾害综合气象预报预警模型[J].气象, 22(12): 3-8.
[26]张小玲, 陶诗言, 孙建华, 2010.基于“配料”的暴雨预报[J].大气科学, 34(4): 754-764.
[27]张芳华, 曹勇, 徐珺, 等, 2016.Logistic判别模型在强降水预报中的应用[J].气象, 42(4): 398-405.
[28]周雨, 刘志萍, 张国平, 2015.鹰厦铁路降水诱发地质灾害概率预报模型及应用[J].应用气象学报, 26(6): 743-749.
[29]周丽雅, 王凯, 刘倪, 2016.基于Logistic回归蚌埠地区致灾雷电预报研究[J].气象与环境学报, 32(5): 147-153.
[30]赵琳娜, 董航宇, 吴亮, 等, 2015.黄淮地区夏季日降水分区概率预报方法研究[J].气象, 41(12): 1503-1513.
[31]赵翠光, 赵声蓉, 2011.华北及周边地区夏季分区客观降水预报[J].应用气象学报, 22(5): 558-566.
文章导航

/