论文

1880年以来地球陆地-海洋温度指数中的太阳黑子活动周期研究

  • 郭纪君 ,
  • 郭治龙 ,
  • 王宁练
展开
  • <sup>1.</sup>中国科学院西北生态环境资源研究院/冰冻圈科学国家重点实验室, 甘肃 兰州 730000;<sup>2.</sup>中国科学院大学, 北京 100049;<sup>3.</sup>西北大学, 陕西 西安 710000

收稿日期: 2020-04-26

  网络出版日期: 2020-08-28

基金资助

国家自然基金委员会冰冻圈科学创新群体项目(SKLCS-ZZ-2019)

Study on the Cycles of Sunspots in the Earth’s Land-Ocean Temperature Index Since 1880

  • Jijun GUO ,
  • Zhilong GUO ,
  • Ninglian WANG
Expand
  • <sup>1.</sup>State Key Laboratory of Cryosphere Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China;<sup>2.</sup>University of Chinese Academy of Sciences, Beijing 100049, China;<sup>3.</sup>Northwest University, Xi’An 710000, Shaanxi, China

Received date: 2020-04-26

  Online published: 2020-08-28

摘要

地球表面气温波动存在多种周期, 太阳辐射是地球气候系统的外部驱动力, 其对地球表面气温具有一定的调制作用。利用Morlet复值小波变换法分析了1880以来地球陆地-海洋温度指数的周期特征, 识别出地球陆地-海洋温度指数具有22年周期。在周期、 相位、 振幅等基础上, 对地球陆地-海洋温度指数和太阳黑子的22年周期分别进行正弦函数拟合, 得出地球陆地-海洋温度指数的22年磁周期与太阳黑子数量的22年周期呈正相关关系; 进一步分析表明, 太阳黑子数量的22年磁周期可能是地球陆地-海洋温度指数22年周期的驱动力。在99%置信水平下, 太阳黑子数量22年周期的振幅约为0.21 ℃, 对全球变暖的评估具有重要影响, 为定量研究全球气候及其驱动机制提供了新的证据。

本文引用格式

郭纪君 , 郭治龙 , 王宁练 . 1880年以来地球陆地-海洋温度指数中的太阳黑子活动周期研究[J]. 高原气象, 2020 , 39(4) : 851 -858 . DOI: 10.7522/j.issn.1000-0534.2020.00038

Abstract

Several cycles exist in time series in the earth's surface temperature.Solar radiation with some cycles is the external driving force of the earth's climate system which modulates the earth's surface temperature and its modulation role to the earth's surface temperature is also one of the basic research contents of climate prediction.The cycles of the earth's land-ocean temperature index since 1880 are analyzed by Morlet complex-valued wavelet transform method, and the 22-year cycle was identified in the earth's land-ocean temperature index.Using the method of moving average to improve the analysis method of air temperature anomalies, the amplitude of the 22-year cycle of the earth's land-ocean temperature index is obtained, and then combined with the MATLAB function fitting program, on the basis of the period, phase, amplitude, etc.The fitting results indicate that the 22-year cycle of the earth's land-ocean temperature index is positively correlated with the 22-year cycle of the sunspots.When the 22-year cycle of sunspot activity is in a positive phase, the surface temperature of the earth is in a warmer phase; when the 22-year cycle of sunspots is in a negative phase, the surface temperature of the earth is in a relatively low temperature phase.The temperature on the earth's surface fluctuates in the form of a quasi-sine function around its 22-year moving average.The long-period temperature of the earth's surface reflects the decadal climate background of the earth's surface temperature, and the short-period change process reflects the temperature change process under the long-period climate background.Multiple cycles overlap each other, forming a complex temperature fluctuation.Sunspot activity is not strictly a one-to-one correspondence with the Earth's surface temperature.The Earth's surface temperature is not only restricted by the factors affecting the long-term scale, but also affected by other short periods.Further analyses show that the 22-year magnetic cycle of sunspots may be a driving factor of the 22-year cycle in the earth's land-ocean temperature index.The amplitude of the 22-year cycle of the earth's land-ocean temperature index is up to about 0.21 °C under constrained by a 99% confidence level, which may have an important impact on the assessment of global warming.The 22-year cycle is an important factor for climate simulation and assessment research and provided some new evidences for quantitative research and driving mechanism of global climate.

参考文献

[1]Boberg F, Lundstedt H, 2002.Solar wind variations related to fluctuations of the North Atlantic Oscillation[J].Geophysical Research Letters, 29(15): 1-4.
[2]Friis-christensen E, Lassen K, 1991.Length of the solar cycle: An indicator of solar activity closely associated with climate[J].Science, 254(5032): 698-700.
[3]Hale G E, 1908.On the probable existence of a magnetic field in sun-spots[J].Journal of Geophysical Research, 13(4): 159-160.
[4]Haigh J D, 1996.Modelling the impact of solar variability on climate[J].Science, 272(5264): 981-984.
[5]Hansen J, Sato M, Kharecha P, 2011.Earth's energy imbalance and implications[J].Atmospheric Chemistry and Physics, 11(24): 13421-13449.
[6]Huber M, Knutti R, 2014.Natural variability, radiative forcing and climate response in the recent hiatus reconciled[J].Nature Geoscience, 7(9): 651-656.
[7]Karl T R, Anthony A, Boyin H, al et, 2015.Possible artifacts of data biases in the recent global surface warming hiatus[J].Science, 348(6242): 1469-1472.
[8]Kodera K, 2002.Solar cycle modulation of the North Atlantic Oscillation: Implication in the spatial structure of the NAO[J].Geophysical Research Letters, 29(8): 1-4.
[9]Le Mou?l J L, Lopes F, Courtillot V, 2019.A solar signature in many climate indices[J].Journal of Geophysical Research: Atmospheres, 124(5): 2600-2619.
[10]Lenssen N J, Schmidt G A, Hansen J E, al et, 2019.Improvements in the GISTEMP uncertainty model[J].Journal of Geophysical Research: Atmospheres, 124(12): 1-20.
[11]Lu C, Zhou B, 2018.Influences of the 11-yr sunspot cycle and polar vortex oscillation on observed winter temperature variations in China[J].Journal of Meteorological Research, 32(3): 367-379.
[12]Marsh N, Svensmark H, 2003.Solar influence on earth's climate[J].Space Science Reviews, 107(1): 317-325.
[13]Gruzdev A N, Bezverkhnii V A, 2019.Analysis of solar cycle-like signal in the North Atlantic Oscillation index[J].Pergamon, 187(1): 53-62.
[14]Scafetta N, West B J, 2008.Is climate sensitive to solar variability?[J].Physics Today, 61(3): 50-51.
[15]Schmidt G A, Shindell D T, Tsigaridis K, 2014.Reconciling warming trends[J].Nature Geoscience, 7(3): 158-160.
[16]Sfica L, Voiculescu M, Huth R, 2015.The influence of solar activity on action centers of atmospheric circulation in North Atlantic[J].Annales Geophysicae, 33(2): 207-215.
[17]Stocker T, Qin D, Plattner G, al et, 2013.IPCC, 2013.Climate change 2013: The physical science basis.Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[R].Computational Geometry, 18(2: 95-123.
[18]Tian G J, Qiao Z, Xu X L, 2014.Characteristics of particulate matter (PM<sub>10</sub>) and its relationship with meteorological factors during 2001 -2012 in Beijing[J].Environmental Pollution, 192: 266-274.
[19]Trenberth K E, Fasullo J T, 2013.An apparent hiatus in global warming?[J].Earth's Future, 1(1): 19-32.
[20]Van Loon H, Meehl G A, 2014.Interactions between externally forced climate signals from sunspot peaks and the internally generated Pacific decadal and North Atlantic Oscillations[J].Geophysical Research Letters, 41(1): 161-166.
[21]Wang J, Yang B, 2017.Internal and external forcing of multidecadal atlantic climate variability over the past 1200 years[J].Nature Geoscience, 10(7): 1-7.
[22]White W B, Lean J, Cayan D R, al et, 1997.Response of global upper ocean temperature to changing solar irradiance[J].Journal of Geophysical Research Oceans, 102(C2: 3255.
[23]Yang C, Wu H, Hu D.2011.Relationship between air temperature oscillations and solar variability on short and medium time scales[J].Science China (Earth Sciences), 54(6): 912-923.
[24]胡永宁, 王林和, 张国盛, 等, 2013.毛乌素沙地1969 -2009年主要气候因子时间序列小波分析[J].中国沙漠, 33(2): 390-395.
[25]姜杰, 汪景琇, 张敬华, 等, 2016.驱动太阳磁周期的原因是什么?[J].科学通报, 61(27): 2973-2985.
[26]李栋梁, 刘洪兰, 2004.黑河流量和祁连山气候的年代际变化[J].中国沙漠, 24(4): 7-13.
[27]李启芬, 吴哲红, 王兴菊, 等, 2020.1981年以来中国夏季降水变化特征及其与SST和前期环流的联系[J].高原气象, 39(1): 58-67.DOI: 10.7522/j.issn.1000-0534.2018.00148.
[28]刘德, 李永华, 何卷雄, 2003.重庆市夏季气温及降水变化的小波分析[J].高原气象, 22(2): 173-178.
[29]罗焕娟, 2008.拉马德雷冷位相第三周期主要灾害链与湖南省天气气候灾害[J].防灾科技学院学报, 10(4): 49-52.
[30]娄飞, 叶熠东, 2017.第24太阳活动周地球附近磁云与非磁云事件的统计分析[J].地球物理学报, 37(4): 381-394.
[31]候启, 张勃, 何航, 等, 2020.气候变化对甘肃河西地区干热风特征的影响[J].高原气象, 39(1): 162-171.DOI: 10.7522/j.issn. 1000-0534.2019.00063.
[32]裴益轩, 郭民, 2001.滑动平均法的基本原理及应用[J].火炮发射与控制学报, 1(1): 21-23.
[33]秦大河, 2005.中国气候与环境演变[J].资源环境与发展, 1(12): 10-11.
[34]曲维政, 白燕, 黄菲, 等, 2006.火山活动对热带高空温度变化的影响[J].地球物理学报, 49(5): 1308-1315.
[35]曲维政, 黄菲, 赵进平, 等, 2007.太阳磁场方向变化对于地球大气温度异常变化的意义[J].地球物理学报, 50(5): 1304-1310.
[36]王绍武, 罗勇, 赵宗慈, 等, 2012.气候变暖的归因研究[J].气候变化研究进展, 8(4): 308-312.
[37]王涛, 霍彦峰, 罗艳, 2016.近300a来天山中西部降水与太阳活动的小波分析[J].干旱区研究, 33(4): 708-717.
[38]魏凤英, 曹鸿兴, 1995.中国-北半球和全球的气温突变分析及其趋势预测研究[J].大气科学, 19 (2): 140-148.
[39]奚秀梅, 段树国, 2019.鄂尔多斯高原地区明清时期气象灾害特征研究[J].高原气象, 38(2): 421-427.DOI: 10.7522/j.issn. 1000-0534.2018.00082.
[40]闫允鲁, 马皓, 罗剑平, 等, 2016.基于Hilbert-Huang变换的极端气温时间序列的尺度分析[J].力学季刊, 37(4): 15-27.
[41]杨保, 施雅风, 周清波, 2002.近300 a来古里雅与长江下游温度变化所受太阳活动、 火山活动的影响分析[J].冰川冻土, 24(1): 40-45.
[42]杨冬红, 杨学祥, 2008.全球变暖减速与郭增建的“海震调温假说”[J].地球物理学进展, 23(6): 1813-1818.
[43]余金波, 吴洪宝, 2001.3个月平均气温距平的CCA预报方法[J].南京气象学院学报, 2(2): 171-177.
[44]张博, 赵滨, 陈隆勋, 等, 2015.温室气体、 海表面温度、 太阳常数及火山活动对中国地表气温影响之初探[J].气候与环境研究, 20(1): 63-70.
[45]张海, 2018.基于小波分析的气候要素长时间序列分析[D].北京: 中国地质大学(北京).
[46]张先恭, 李小泉, 1982.本世纪我国气温变化的某些特征[J].气象学报, 2(2): 72-82.
文章导航

/