论文

四川雅安三种主要大气污染物浓度与气象条件的关系及其预测研究

  • 吴亚平 ,
  • 张琦 ,
  • 王炳赟 ,
  • 王式功 ,
  • 邵平
展开
  • <sup>1.</sup>成都信息工程大学大气科学学院, 高原大气与环境四川省重点实验室, 四川 成都 610225;<sup>2.</sup>四川省雅安市气象局, 四川 雅安 625000;<sup>3.</sup>遵义院士工作中心, 贵州 遵义 563000

收稿日期: 2019-08-20

  网络出版日期: 2020-08-28

基金资助

国家自然科学基金项目(91644226);四川省雅安市科技局2019年度科技计划项目(2019yyjskf02)

The Forcast of Three Major Atmospheric Pollutants Concentrations and its Relationships with Meteorological Factors in Ya'an, Sichuan Province

  • Yaping WU ,
  • Qi ZHANG ,
  • Bingyun WANG ,
  • Shigong WANG ,
  • Ping SHAO
Expand
  • <sup>1.</sup>Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, College of Atmospheric Sciences, Chengdu University of Information technology, Chengdu 610225, Sichuan, China;<sup>2.</sup>Bureau of Meteorology in Ya'an, Ya’an 625000, Sichuan, China;<sup>3.</sup>Academician work center in Zunyi, Zunyi 563000, Guizhou, China

Received date: 2019-08-20

  Online published: 2020-08-28

摘要

基于四川雅安城市空气质量预报和大气污染防控的需求以及冬季以颗粒物(PM2.5和PM10)污染为主、 夏季以臭氧(O3)污染为主的特点, 本文利用雅安市2015 -2018年空气污染监测数据以及同期气象观测资料, 重点分析雅安市空气污染物PM2.5、 PM10和O3浓度变化特征的基础上, 利用灰色关联度方法对上述污染物浓度与气象要素的相关关系进行了细致分析;通过BP神经网络进行两者的数学建模, 构建了雅安市空气质量短期预报模型, 并进行了试预报检验。研究表明: 雅安市2015 -2017年期间污染物O3、 PM2.5、 PM10浓度呈上升的趋势, 空气质量达标率自2015年的92.7%降低到2017年的82.2%, 2018年达标率略有上升为88%, 但仍出现了9天中度污染和1天重污染。污染物浓度与气象要素变化相关密切, 其中, 降雨量和气压与PM2.5和PM10污染关联最大, 表明雅安作为四川盆地的“雨城”, 其降水对颗粒物的湿清除效应是很显著的;而气温和风速与O3污染关联最大, 恰好反映了高温和由高温所隐含的强辐射对O3生成的促进作用。由BP神经网络所建立的雅安O3预报模型, 其准确度较稳定, 各季7天平均相对误差都<19%, 并且预报效果排序为夏季>冬季>秋季>春季;由BP神经网络所建立的雅安PM2.5预报模型, 其在春季和夏季预测准确度较好, 两季7日平均相对误差都<16%, 秋季相对误差略高一点, 其四季预报准确度排序为夏季>春季>秋季>冬季。此研究结果可为当地空气质量预报业务的开展提供技术支持。

本文引用格式

吴亚平 , 张琦 , 王炳赟 , 王式功 , 邵平 . 四川雅安三种主要大气污染物浓度与气象条件的关系及其预测研究[J]. 高原气象, 2020 , 39(4) : 889 -898 . DOI: 10.7522/j.issn.1000-0534.2019.00115

Abstract

Based on the need of air quality forecast and air pollution prevention in Ya'an, Sichuan, air pollution monitoring data of Ya'an City from 2015 to 2018 and meteorological data at the same period were used to analyze the correlations between the air pollutants concentrations and meteorological factors in detail by Gray Correlation Method. The short-term forecast models of air quality in Ya'an city were constructed with BP Neural Network method, and forecast results were checked too. The results showed that the pollutants concentrations of O3, PM2.5 and PM10 in Ya'an City showed upward trends from 2015 to 2017, with the air quality passing rate dropping from 92.7% to 82.2%, but the passing rate rising slightly to 88% in 2018, however there were still 9 days with moderate pollution and 1 day with heavy pollution. The pollutants concentrations were closely related to meteorological factors, of which rainfall and air pressure were most associated with PM2.5 and PM10 pollutions, indicating that Ya'an, as the "rain city" of Sichuan, had a significant wet removal effect on particulate matter. While temperature and wind speed were most correlated with O3 pollution, which just reflected the promotion of O3 generation by high temperature and strong radiation implied by high temperature. Using the BP neural network, the forecast model of O3 had a stable accuracy, with an average relative error less than 19% for each season in 7 days, and the forecast results were sorted from summer, winter, autumn to spring. The forecast models of PM2.5 had better prediction accuracy in spring and summer, with an average relative error less than 16% in 7 days, a slightly higher relative error in autumn. This results could provide technical support for the development of local air quality forecasting operations in Ya’an.

参考文献

[1]Clarence T, Nagamoto, Farn P, al et, 1990.美国科罗拉多州云水、 雨水和气溶胶样品的化学分析[J].气象科技, (3): 50-53.
[2]Duo B, Cui L, Wang Z, al et, 2018.Observations of atmospheric pollutants at Lhasa during 2014-2015: Pollution status and the influence of meteorological factors [J].Journal of Environmental Sciences, (63): 28-42.
[3]Ning G, Wang S, Ma M, al et, 2018.Characteristics of air pollution in different zones of Sichuan Basin, China[J].Science of the Total Environment, 612: 975-984.
[4]Wang X, Dickinson R, Su L, al et, 2018.PM2.5 Pollution in CHINA and how it has been exacerbated by terrain and meteorological conditions[J].American Meteorological Society, 99(1): 105-120.
[5]Wu D, Wu X J, Li F, al et, 2013.Long-Term variations of fog and mist in mainland China during 1951 -2005[J].Journal of Tropical Meteorology, 19(2): 181-187.
[6]Zhang Y, Wang S, Fan X, al et, 2019.A temperature indicator for heavy air pollution risks (TIP)[J].Science of the Total Environment, 678: 712-720.
[7]安俊琳, 王跃思, 李昕, 等, 2007.北京大气中NO、 NO<sub>2</sub>和O<sub>3</sub>浓度变化的相关性分析[J].环境科学, 28(4): 4706-4711.
[8]安兴琴, 左洪超, 吕世华, 等, 2005.Models-3空气质量模式对兰州市污染物输送的模拟[J].高原气象, 24(5): 748-756.
[9]陈雷华, 余晔, 陈晋北, 等, 2010.2001 -2007年兰州市主要大气污染物污染特征分析[J].高原气象, 29(6): 1627-1633.
[10]陈素梅, 2018.北京市雾霾污染健康损失评估: 历史变化与现状[J].城市与环境研究, (2): 84-96.
[11]程兴宏, 徐祥德, 丁国安, 等, 2010.不同大气污染物监测密度对CMAQ源同化修正效果影响的模拟[J].高原气象, 29(1): 222-229.
[12]高秀清, 2017.太原市工业能源消费与大气污染的相关性分析[J].山西能源学院学报, 30(2): 112-114.
[13]郭伟, 程艳, 樊巍, 等, 2014.西安市大气污染物浓度及影响因素分析[J].地球环境学报, 5(4): 235-242.
[14]郝巨飞, 袁雷武, 李芷霞, 等, 2018.激光雷达和微波辐射计对邢台市一次沙尘天气的探测分析[J].高原气象, 37(4): 1110-1119.DOI: 10.7522/j.issn.1000-0534.2018.00009.
[15]何建军, 余晔, 刘娜, 等, 2016.气象条件和污染物排放对兰州市冬季空气质量的影响[J].高原气象, 35(6): 1577-1583.DOI: 10.7522 /j.issn.1000-0534.2015.00087.
[16]侯雪伟, 朱彬, 康汉青, 等, 2013.MOZART-4大气化学模式模拟东亚季风对对流层污染物的影响: 模式验证[J].高原气象, 32(2): 2387-2401.DOI: 10.7522/j.issn.1000-0534.2012.00038.
[17]胡晓, 徐璐, 俞科爱, 等, 2017.宁波地区一次重污染天气过程的成因分析[J].高原气象, 36(5): 1412-1421.DOI: 10.7522 /j.issn.1000-0534.2016.00098.
[18]华雯丽, 韩颖, 乔瀚洋, 等, 2018.敦煌沙尘气溶胶质量浓度垂直特征个例分析[J].高原气象, 37(5): 1428-1439.DOI: 10.7522 /j.issn.1000-0534.2018.00017.
[19]金维明, 2009.主要气象因素对可吸入颗粒物浓度影响规律探讨[J].中国环境监测, 25(4): 71-75.
[20]李苹, 余晔, 赵素平, 等, 2019.2015 -2017年中国近地面O<sub>3</sub>污染状况与影响因素分析[J].高原气象, 38(6): 1344-1353.DOI: 10.7522 /j.issn.1000-0534.2019.0006.
[21]李霞, 任宜勇, 吴彦, 等, 2007.乌鲁木齐污染物浓度和大气气溶胶光学厚度的关系[J].高原气象, 26(3): 541-546.
[22]欧阳钧, 王爱枝, 2009.基于Matlab的BP神经网络在大气污染物浓度预测中的应用[J].环境科学与管理, 34(11): 176-180.
[23]彭晓武, 相红, 陈惠明, 等, 2010.广州市部分气象因素与大气中SO<sub>2</sub>等污染物浓度的关系[J].环境与健康杂志, 27(12): 1095-1097.
[24]邱继勇, 黄倩, 田文寿, 等, 2019.中国污染物向北极地区传输的数值模拟研究[J].高原气象, 38(4): 887-900.DOI: 10.7522 /j.issn.1000-0534.2018.00088.
[25]任阵海, 苏福庆, 高庆先, 等, 2005.边界层内大气排放物形成重污染背景解析[J].大气科学, 29(1): 57-63, 169.
[26]邵天杰, 赵景波, 马莉, 2008.西安空气污染物时空变化特征分析[J].干旱区环境与源, 22(7): 77-83.
[27]宋新山, 邓伟, 张琳, 2008.MATLAB在环境科学中的应用[M].北京: 化学工业出版社.
[28]苏高利, 邓芳萍, 2003.论基于MATLAB语言的BP神经网络的改进算法[J].科技通报, 19(2): 130-135.
[29]谭学瑞, 邓聚龙, 1995.灰色关联分析: 多因素统计分析新方法[J].统计研究, 65(3): 46-48.
[30]王静, 邱粲, 刘焕彬, 等, 2013.山东重点城市空气质量及其与气象要素的关系[J].生态环境学报, 22(4): 644-649.
[31]王淑兰, 张远航, 钟流举, 等, 2005.珠江三角洲城市间空气污染的相互影响[J].中国环境科学, 25(2): 133-137.
[32]吴兑, 2008.一种新的灾害性天气——灰霾[J].环境, (7): 38-39.
[33]吴兑, 2011.灰霾天气的形成与演化[J].环境科学与技术, 34(3): 157-161.
[34]吴兑, 2012.近十年中国灰霾天气研究综述[J].环境科学学报, 32(2): 257-269.
[35]吴兑, 毕雪岩, 邓雪娇, 等, 2006.珠江三角洲气溶胶云造成的严重灰霾天气[J].自然灾害学报, 15(6): 77-83.
[36]吴兑, 陈位超, 常业谛, 等, 1994.华南地区大气气溶胶质量谱与水溶性成分谱分布的初步研究[J].热带气象学报, 10(1): 85-96.
[37]吴兑, 廖碧婷, 吴蒙, 等, 2014.环首都圈霾和雾的长期变化特征与典型个例的近地层输送条件[J].环境科学学报, 34(1): 1-11.
[38]吴建生, 金龙, 汪灵枝, 2006.遗传算法进化设计BP神经网络气象预报建模研究[J].热带气象学报, 22(4): 411-416.
[39]吴建生, 刘丽萍, 金龙, 2008.粒子群-神经网络集成学习算法气象预报建模研究[J].热带气象学报, 24(6): 679-686.
[40]夏田, 徐建华, 2018.公众对城市大气污染的健康防护行为研究[J].北京大学学报(自然科学版), 54(4): 801-806.
[41]杨德保, 王式功, 黄建国, 1994.兰州市区大气污染与气象条件的关系[J].兰州大学学报, 30(1): 132-136.
[42]袁博, 肖苏林, 蒋大和, 2009.我国城市群空气污染及其季节变化特点[J].环境科技, 22(增刊1): 102-106.
[43]湛社霞, 匡耀求, 阮柱, 2018.基于灰色关联度的粤港澳大湾区空气质量影响因素分析[J].清华大学学报(自然科学版), 58 (8): 761-767.
[44]张经纬, 冯利红, 侯常春, 等, 2019.天津市大气污染对儿童呼吸系统疾病影响的病例交叉研究[J].中华疾病控制杂志, 23(5): 545-549.
[45]张珺, 王式功, 杜亮亮, 等, 2019.基于BP神经网络的河北中南部空气质量预报研究[J].江西农业学报, 31(5): 96-102
[46]张荣艳, 唐风军, 2017.我国环境污染与居民恶性肿瘤发病及死亡的灰色关联度分析[J].数学的实践与认识, 47(6): 127-135.
[47]中华人民共和国环保部和国家质量监督检验检疫总局, 2012.北京.环境空气质量标准[S].GB3095-2012.
文章导航

/