九龙站位于青藏高原主体和成都平原之间的过渡带, 地理位置、 地形分布、 天气气候都独具区域特色, 基于中国气象局成都高原气象研究所连续9年夏季在九龙站开展的西南涡加密观测探空试验资料, 对比分析了该站边界层大气的日变化和年际变化特征。结果表明: (1)九龙站边界层大气温度08:00(北京时, 下同)最低, 其次是02:00, 而14:00最高。比湿与温度位相相反, 14:00最小, 20:00和02:00皆较大。近地层大气温度/比湿日变幅大, 而离地2 km高度处日变幅小。地面温度/比湿较高时次对应的垂直梯度也大, 以上观测结果符合普遍大气边界层特性。14:00的地表平均温度的年际差低于08:00, 离地2 km高度处平均温度的年际差与地表相当。低层大气的温度/比湿年际差偏差幅度比高层大, 但最大偏差并非出现在最接近地表的大气层。(2)九龙站边界层风场在垂直方向上存在风切变, 20:00风速最大, 14:00次之, 08:00最小; 在02:00和08:00以偏西风为主, 14:00和20:00则是偏东风为主。平均风速极大值出现高度的波动范围在14:00最小, 08:00最大, 平均风速极大值之差则是08:00最小, 20:00最大。(3)九龙站08:00边界层高度最低, 14:00混合程度最强, 20:00最高。(4)九龙站地面平均温度日较差在6.7~9.3 K, 最大年际差为1.6 K。地面大气平均比湿日较差在0.6~1.13 g·kg-1, 最大年际差为2.66 g·kg-1。地面平均气压在02:00最大, 20:00最低, 日变幅在2~2.5 hPa, 最大年际差为3.19 hPa。14:00地面平均风速最大, 02:00和08:00皆较小, 日变幅在1.9~2.9 m·s-1。降水与地面温度/比湿之间存在正相关关系, 与地面气压/风速之间存在负相关关系。
Jiulong station located in the slope transition zone between Qinghai-Tibetan Plateau and Chengdu Plain, has regional characteristics in weather and climate because of terrain undulation and special geographical position.Based on the analysis of intensive sounding data in summer from 2010 to 2018, we obtained the following results: (1) The temperature of atmospheric boundary layer is the lowest at 08:00(Beijing Time, the same as after), then at 02:00, and the highest at 14:00.On the contrary, the smallest specific humidity appears at 14:00 and bigger at 20:00 and 02:00.The diurnal variation amplitudes of temperature and specific humidity are large near surface layer, while small at 2 km above the ground.The corresponding vertical gradient is also large when surface temperature/specific humidity is high.The inter-annual variation of mean surface temperature is smaller at 14:00 than at 08:00, but annual variation at 2 km height is similar at surface layer, and is little fluctuation.The deviation of temperature/specific humidity in lower atmosphere is larger than that in the upper atmosphere, but the maximum deviation does not occur in the atmosphere closest to the surface.(2)The vertical wind shear appears in the boundary layer.The wind speed is the biggest at 20:00, then at 14:00, and the smallest at 08:00.The westward wind is dominant at 02:00 and 08:00, but the eastward wind at 14:00 and 20:00 in the boundary layer.The fluctuation range of maximum wind speed is the smallest at 14:00, and the biggest at 08:00; the difference of maximum wind speed is the smallest at 08:00, and the biggest at 20:00.(3) The boundary layer height is the lowest at 08:00 and the highest at 20:00.It mixes most fully at 14:00.(4) The maximum difference of mean surface temperature is 1.6 K, and its diurnal range is 6.7~9.3 K.The maximum difference of mean surface specific humidity is 2.66 g·kg-1, and its diurnal range is 0.6~1.13 g·kg-1.The mean surface pressure is the highest at 02:00 and the lowest at 20:00.Its diurnal range is 2~2.5 hPa, and the maximum difference is 3.19 hPa.The mean surface wind speed is the biggest at 14:00, smaller at 02:00 and 08:00, and its diurnal range is 1.9~2.9 m·s-1.There is a positive correlation between precipitation and surface temperature/ specific humidity, and a negative correlation between precipitation and surface pressure/wind speed.
[1]Bao X H, Zhang F Q, 2013.Evaluation of NCEP-CFSR, NCEP-NCAR, ERA-Interim, and ERA-40 reanalysis datasets against independent sounding observations over the Tibetan Plateau[J].Journal of Climate, 26: 206-214.
[2]Bian L G, Gao Z Q, Ma Y F, al et, 2012.Seasonal variation in turbulent fluxes over Tibetan Plateau and its surrounding areas: Research Note[J].Journal of the Meteorological Society of Japan, 90C: 157-171.
[3]Bian L G, Xu X D, Lu L H, al et, 2003.Analyses of turbulence parameters in the near-surface layer at Qamdo of the Southeastern Tibetan Plateau[J].Advances in Atmospheric Sciences, 20(3): 369-378.
[4]Bianco L, Djalalova I V, King C W, al et, 2011.Diurnal evolution and annual variability of boundary-layer height and its correlation to other meteorological variables in California’s Central Valley [J].Boundary-Layer Meteorology, 140: 491-511.
[5]Dai C Y, Gao Z Q, Wang Q, al et, 2011.Analysis of atmospheric boundary layer height characteristics over the arctic ocean using the aircraft and GPS Soundings[J].Atmospheric and Oceanic Science Letters, 4(2): 124-130.
[6]Gao Z Q, Wang J M, Ma Y M, al et, 2000.Calculation of near surface layer turbulent transport and analysis of surface thermale quilibrium features in Naqu of Tibet[J].Physics and Chemistry of the Earth(B), 25(2): 135-139.
[7]Guo X Y, Lei W, Tian L D, al et,2016.Spatio-temporal variability of vertical gradients of major meteorological observations around the Tibetan Plateau[J].International Journal of Climatology, 36(4): 1901-1916.
[8]Li M, Ma Y M, Ma W Q, al et, 2011.Different characteristics of the structure of atmospheric boundary layer between dry and rainy periods over the northern Tibetan Plateau [J].Sciences in Cold and Arid Regions, 3: 509-516.
[9]Ma Y M, Massimo M, Reinder F, 2010.Parameterization of Heat Fluxes at Heterogeneous Surfaces by Integrating Satellite Measurements with Surface Layer and Atmospheric Boundary Layer Observations[J].Advances in Atmospheric Sciences, 27(2): 328-336.
[10]Vogelezang D H P, Holtslag A A M, 1996.Evaluation and model impacts of alternative boundary-layer height formulations [J].Boundary-Layer Meteorology, 81: 245-269.
[11]Zuo H C, Hu Y Q, Li D L, al et, 2005.Seasonal transition and its boundary layer characteristics in Anduo area of Tibetan Plateau[J].Progress in Natural Science, 15(3): 239-245.
[12]崔洋, 常倬林, 桑建人, 等, 2015.河套干旱地区夏季边界层结构特征观测分析[J].冰川冻土, 37(5): 1257-1267.
[13]杜一博, 张强, 王凯嘉, 等, 2018.西北干旱区夏季晴天、 阴天边界层结构及其陆面过程对比分析[J].高原气象, 37(1): 148-157.DOI: 10.7522/j.issn.1000-0534.2017.00042.
[14]李国平, 陈佳, 2018.西南涡及其暴雨研究新进展[J].暴雨灾害, 7(4): 293-302.
[15]李家伦, 洪钟祥, 孙菽芬, 2000.青藏高原西部改则地区大气边界层特征[J].大气科学, 24(3): 301-312.
[16]李茂善, 马耀明, 胡泽勇, 等, 2004.藏北那曲地区大气边界层特征分析[J].高原气象, 23(5): 728-733.
[17]李英, 李跃清, 赵兴炳, 2009.青藏高原东坡理塘地区近地层湍流通量与微气象特征研究[J].气象学报, 67(3): 417-425.
[18]李跃清, 徐祥德, 2016.西南涡研究和观测试验回顾及进展[J].气象科技进展, 6(3): 134-140.
[19]刘辉志, 冯健武, 王雷, 等, 2013.大气边界层物理研究进展[J].大气科学, 37(2): 467-476.
[20]刘辉志, 洪钟祥, 2000.青藏高原改则地区近地层湍流特征[J].大气科学, 24(3): 289-300.
[21]卢敬华, 1986.西南低涡概论[M].北京: 气象出版社.
[22]卢萍, 杨康权, 李英, 2017.基于加密探空资料对不同海拔高度台站边界层大气的对比分析 [J].大气科学, 41(6): 1234-1245.
[23]卢萍, 郑伟鹏, 赵兴炳, 2012.川西西南涡加密探空资料分析及数值模拟试验[J].高原山地气象研究, 32(1): 1-7.
[24]马英赛, 孟宪红, 韩博, 等, 2019.黄土高原土壤湿度对地表能量和大气边界层影响的观测研究[J].高原气象, 38(4): 705-715.DOI: 10.7522/j.issn.1000-0534.2019.00036.
[25]马元仓, 李岩瑛, 杨吉萍, 等, 2019.青海中北部边界层高度与不同灾害天气的关系[J].高原气象, 38(5): 1048-1057.DOI: 10. 7522/j.issn.1000-0534.2018.00136.
[26]慕丹, 李跃清, 2017.西南涡统计特征研究综述[J].干旱气象, 35(2): 175 -181.
[27]苏彦入, 吕世华, 范广洲, 2018.青藏高原夏季大气边界层高度与地表能量输送变化特征分[J].高原气象, 37(6): 1470-1485.DOI: 10.7522/j.issn.1000-0534.2018.00040.
[28]王倩茹, 范广洲, 葛非, 等, 2018.基于CERA-20C 资料青藏高原边界层高度日变化气候特征分析[J].高原气象, 37(6): 1486-1498.DOI: 10.7522/j.issn.1000-0534.2018.00042.
[29]韦志刚, 陈文, 黄荣辉, 2010.敦煌夏末大气垂直结构和边界层高度特征[J].大气科学, 34(5): 905-913.
[30]徐桂荣, 崔春光, 周志敏, 等, 2014.利用探空资料估算青藏高原及下游地区大气边界层高度[J].暴雨灾害, 33(3): 217-227.