探空观测资料作为天气预报和数值预报不可缺少的资料源在科研和业务中发挥着重要作用, 但该资料质量的好坏直接影响模式预报的准确性, 因此必须在资料源头开展资料质量控制确保高质量资料在同化和模式预报中得到应用。质量控制要有好的效验工具和比对资料, 本文将我国业务数值预报的CIMISS数据库与NCEP的GDAS数据库的探空湿度资料进行比较, 了解CIMISS库资料的质量与偏差情况, 以及两种资料库数据在GRAPES 4DVAR同化应用结果, 试验表明: 两个库资料虽然存在偏差, 经过质量控制, 偏差明显减小; 在实际同化分析与EC再分析场比较水平和垂直偏差都很小, 模式预报降水评分基本一致, 从而证实CIMISS库中探空湿度资料的合理可用性, 为深入认识探空湿度资料的质量和性能提供了依据。
As one of the indispensable data sources for weather forecast and numerical prediction, the sounding observation data plays an important role in scientific research and operation.The quality of data directly affects the accuracy of modeling prediction, so it is necessary to carry out data quality control for the data source to ensure the application of high-quality data in assimilation and model forecasting.The certificated data and effective tools are both needed for the data quality control.In this study, the data sets from CIMISS database of the operational numerical prediction system in China were compared with those from GDAS database of NCEP.The quality and deviation of CIMISS database, and the experimental results of the two kinds of data applied with GRAPES 4DVAR system were analyzed.The results showed that the deviation between the two data sets was obviously reduced after data quality control.Both the horizontal and vertical deviation between the actual assimilation analysis and the EC reanalysis fields were very small, and the precipitation score of the model prediction remained stable.These supported the reasonable availability of the sounding humidity data in the CIMISS database, and provided helpful information for further understanding on their quality.
[1]Anna A P, Drasko V, Anton B, al et, 2009.Radiosonde humidity bias correction over the West African region for the special AMMA reanalysis at ECMWF [J].Quarterly Jouranal of the Royal Meteorological Society, 135: 595-617.
[2]Bian J C, Chen H B, Voemel H, al et, 2011.Intercomparison of humidity and temperature sensors: GTS1, Vaisala RS80, and CFH [J].Advances in Atmospheric Sciences, 28 (1): 139-146.
[3]Faccani C, Rabier F, Fourrie N, al et, 2009.The impacts of AMMA radiosonde data on the french global assimilation and forecast system [J].Weather and Forecasting, 24(5): 1268-1286.
[4]Voemel H, Selkirk H, Miloshevich L, al et, 2007.Radiation dry bias of the Vaisala RS92 humidity sensor[J].Journal of Atmospheric and Oceanic Technology, 24(6): 953-963.
[5]Mathieu N, Jean-Philippe L, Olivier B, al et, 2008.Correction of humidity bias for Vaisala RS80-A sonders during the AMMA 2006 observing period[J].Journal of Atmospheric and Oceanic Technology, 25(11): 2152-2158.
[6]Kunio Y, Mikiko F, Naoki S, al et, 2008.Correction for radiation dry bias found in RS92 radiosonde data during the MISMO field experiment [J].SOLA, 4: 13-16.
[7]郝民, 龚建东, 王瑞文, 等, 2015.中国L波段探空湿度观测资料的质量评估及偏差订正[J].气象学报, 73(1): 187-199.
[8]郝民, 龚建东, 田伟红, 等, 2018.L波段探空仪湿度资料偏差订正及同化试验[J].应用气象学报, 29(5): 559-570.
[9]李庆雷, 远芳, 杨贵, 等, 2018.L波段探空秒级资料系数化方案及检验方法[J].气象科技进展, 8(1): 127-132.
[10]李欣怡, 向伟玲, 陈学舜, 等, 2019.曹妃甸工业区空气污染来源及其对周边地区污染贡献的数值模拟研究[J].气候与环境研究, 24(4): 469-481.
[11]刘佩廷, 徐枝芳, 朱克云, 等, 2017.地面气压同化递进式OMB质量控制方法研究[J].气象, 43(9): 1138-1151.
[12]任芝花, 余予, 韩瑞, 等, 2018.自动与人工观测霾日、 雾日序列连续性分析[J].高原气象, 37(3): 863-871. DOI: 10.7522/j.issn. 1000-0534.2018.00007.
[13]唐南军, 刘艳, 李刚, 等, 2014.中低空探空相对湿度观测数据的新问题——基于中国L波段探空系统湿度观测异常偏干现象的初步分析[J].热带气象学报, 30(4): 643-653.
[14]田伟红, 2018.俄罗斯探空观测减少对GRAPES模式的影响分析[J].气象, 44(2): 320-325.
[15]王英, 熊安元, 2015.L波段探空仪器换型对高空湿度资料的影响[J].应用气象学报, 26(1): 76-85.
[16]王瑞文, 万晓敏, 田伟红, 等, 2016.AMDAR温度观测的误差统计特征分析[J].气象, 42(3): 330-338.
[17]万晓敏, 韩威, 田伟红, 等, 2018.加密FY-2G云导风质量评估及其在GRAPES_RAFS系统中的应用分析[J].高原气象, 37(4): 1083-1093.DOI: 10.7522/j.issn.1000-0534.2017.00089.
[18]万晓敏, 田伟红, 韩威, 等, 2017.FY-2E云导风的算法改进及其在GRAPES中同化应用研究[J].气象, 43(1): 1-10.
[19]夏静雯, 傅云飞, 2016.东亚与南亚雨季对流和层云降水云内的温湿结构特征分析[J].大气科学, 40 (3): 563-580.
[20]徐文静, 郭亚田, 黄炳勋, 等, 2007.GTS碳湿敏元件性能测试数据分析及相对湿度订正[J], 气象科技, 35(3): 423-428.
[21]余贞寿, 冀春晓, 杨程, 等, 2018.同化风廓线雷达资料对浙江降水预报改进评估[J].应用气象学报, 29(1): 97-110.
[22]姚雯, 马颖, 高丽娜, 2017.L波段与59-701探空系统相对湿度对比分析[J].应用气象学报, 28(2): 218-226.
[23]姚爽, 陈敏, 王建捷, 2015.L波段分钟数据在WRF模式中的变分同化应用试验[J].气象, 41(6): 695-706.
[24]张林, 刘永柱, 2017.GRAPES全球四维变分同化系统极小化算法预调节[J].应用气象学报, 28(2): 168-176.
[25]张思齐, 郭艳君, 王国复, 2018.中国探空观测与第3代再分析大气湿度资料的对比研究[J].气象学报, 76(2): 289-303.
[26]庄照荣, 薛纪善, 韩威, 等, 2014.探空观测黑名单检查在变分同化系统中的应用[J].应用气象学报, 25(3): 274-283.
[27]赵世军, 苏小勇, 高太长, 2012.RS92探空仪温压湿测量性能分析[J].气象科技, 40(1): 31-34.
[28]朱平, 俞小鼎, 2019.青藏高原东北部一次罕见强对流天气的中小尺度系统特征分析[J], 高原气象, 38(1): 1-13. DOI: 10. 7522/j.issn.1000-0534.2018.00070.
[29]朱彦良, 凌超, 陈洪斌, 等, 2012.两种再分析资料与RS92探空资料的比较分析[J].气候与环境研究, 17(3): 381-391.