利用高空、 地面、 新一代天气雷达和NCEP/NCAR 1°×1°再分析等资料, 详细分析了豫东平原地带4次龙卷的天气形势、 环境条件和雷达监测特征, 探讨了强降水过程中局地龙卷的诱发原因。结果表明: (1) 4次龙卷多发生在高空分流辐散、 中层中纬度槽前和副热带高压边缘西南暖湿气流形势下, 低空急流、 超低空急流和低涡、 切变及地面低压辐合区是有利于暴雨过程中出现局地龙卷的主要影响系统。(2) 单站探空参数特征为基本饱和的深厚湿层, 温度垂直递减率较小, 大气可降水量在5.6~6.7 cm, 水汽条件非常充沛。对流有效位能差异较大, K指数多在30~43 ℃,-20 ℃、 干球0 ℃(DBZ)、 湿球0 ℃(WBZ)层高度均较高, 而自由对流高度和抬升凝结高度低。龙卷发生前0~6 km、 0~1 km垂直风切变分别为14~22 m·s-1和12~14 m·s-1。相似过程物理量合成豫东龙卷易发区位于代表热力、 水汽关键物理量的异常大值区中。(3) 雷达回波上龙卷多由大范围暴雨回波前沿强回波带上的微型超级单体产生, 对应速度图上有自西南向东北方向移动的中气旋和龙卷涡旋特征TVS。中气旋和TVS顶高和旋转深度多在4 km以下, 底高多在0.5 km以下。(4) 中气旋对龙卷的监测率个例间差异较大, 在29%~75%, 提前预警的时间基本在30~50 min; 而TVS对龙卷的监测率可达50%~100%, 但提前时间较短, 在0~18 min。最大切变值的大小除了与龙卷强度有关外, 与监测距离也有很大关系。
Based on upper-air observation, ground observation, the CINRAD radar, NCEP/NCAR (1°×1°) reanalysis and other data, analyzed the weather situation, environmental conditions and radar monitoring characteristics of four tornado cases in Eastern Henan Plain in details, and discussed the causes of tornadoes during heavy precipitation.The results show that: (1) The four tornadoes mostly occurred in the high-level diffluence divergence, the middle midlatitude trough and the southwest warm and humid airflow at the edge of the subtropical high.Low-level jets, ultra-low-level jets and low-vortex, shear and ground low pressure convergence zone are the main influencing systems that facilitate the occurrence of local tornado during heavy rain.(2) The single-station sounding parameter is characterized by a nearly saturated deep wet layer, a small vertical temperature decline rate, an atmospheric precipitation of 5.6~6.7 cm, and water vapor is abundant.The convective available potential energy is quite different, while the K index is mostly at 30~43 °C.The height of -20 ℃ layer, 0 ℃ dry-bulb temperature (DBZ) layer, and 0 ℃ wet-bulb temperature (WBZ) layer are all higher, while the free convection level and lifting condensation level are low.Before tornadoes occurred, vertical wind shear of 0~6 km and 0~1 km is respectively 14~22 m·s-1 and 12~14 m·s-1.Physical quantity of the similar process synthesize the tornado-prone area in Eastern Henan is located in the abnormal large value area representing the key physical quantities of heat and water vapor.(3) On the radar echo maps, the tornado is mostly generated by the micro-super-cell on the strong echo band before the large-scale rainstorm echo, on the corresponding velocity maps, there are mesocyclones and tornadic vortex signatures (TVS) moving from the southwest to the northeast.The mesocyclones and TVS top height and rotation depth are mostly below 4km, and the bottom height is mostly below 0.5 km.(4) The monitoring rate of mesocyclone to tornado varies greatly from 29% to 75%, and the early warning time is basically 30~50 minutes.The TVS monitoring rate of the tornado can reach 50%~100%, but the advance time is shorter in 0~18 minutes.In addition to the strength of the tornado, the maximum shear value is also related to the monitoring distance.
[1]Davies-Jones R, Trapp R J, Bluestein H B, 2001.Tornadoes and tornadic storms[J].Meteorological Monographs, 28(50): 167-222.
[2]Doswell C A, 2001.Severe convective storms[J].Meteorological Monographs, 28(50): 1-26.
[3]Trapp R J, Stumpf G J, Manross K L, 2005.A reassessment of the percentage of tornadic mesocyclones[J].Weather and Forecasting, 20(4): 680-687.
[4]Mitchell E D, Vasiloff S V, Stumpfm G J, al et, 1998.The national severe storms laboratory tornado detection algorithm[J].Weather and Forecasting, 13(2): 352-366.
[5]范雯杰, 俞小鼎, 2015.中国龙卷的时空分布特征[J].气象, 41(7): 793-805.
[6]何建新, 曾强宇, 王皓, 等, 2018.龙卷的雷达探测研究进展[J].成都信息工程大学学报, 33(5): 477-489.
[7]黄先香, 俞小鼎, 炎利军, 等, 2019a.1804号台风“艾云尼”龙卷分析[J].气象学报, 77(4): 645-661.
[8]黄先香, 俞小鼎, 炎利军, 等, 2019b.珠江三角洲台风龙卷的活动特征及环境条件分析[J].气象, 45(6): 777-790.
[9]栗晗, 王新敏, 张霞, 等, 2018.河南“7·19”豫北罕见特大暴雨降水特征及极端性分析[J].气象, 44(9): 1136-1147.
[10]李改琴, 许庆娥, 吴丽敏, 等, 2014.一次龙卷风天气的特征分析[J].气象, 40(5): 628-636.
[11]李兆慧, 王东海, 麦雪湖, 等, 2017.2015年10月4日佛山龙卷过程的观测分析[J].气象学报, 75(2): 288-313.
[12]申占营, 2012.河南省1949-2011年龙卷风灾害的时空分布特点[J].农业灾害研究, 2(5): 29-32.
[13]苏爱芳, 孙景兰, 谷秀杰, 等, 2013.河南省对流性暴雨云系特征与概念模型[J].应用气象学报, 24(2): 219-229.
[14]王秀明, 俞小鼎, 周小刚, 2015.中国东北龙卷研究: 环境特征分析[J].气象学报, 73(3): 425-441.
[15]王秀明, 俞小鼎, 2019.热带一次致灾龙卷形成物理过程研究[J].气象学报, 77(3): 387-404.
[16]王晓玲, 王海燕, 王珊珊, 等, 2015.边界层准静止干线触发的中尺度暴雨机理分析[J].高原气象, 34(5): 1310-1322.DOI: 10.7522/j.issn.1000-0534.2014.00056.
[17]魏文秀, 赵亚民, 1995.中国龙卷风的若干特征[J].气象, 21(5): 37-40.
[18]吴芳芳, 俞小鼎, 张志刚, 等, 2013.苏北地区超级单体风暴环境条件与雷达回波特征[J].气象学报, 71(2): 209-227.
[19]吴蓁, 范学峰, 郑世林, 等, 2008.台风外围偏东气流中的暴雨及其等熵位涡特征[J].高原气象, 27(3): 584-595.
[20]徐小红, 余兴, 朱延年, 等, 2018.6.23龙卷FY-2G卫星云微物理特征分析[J].高原气象, 37(6): 1737-1748.DOI: 10.7522/j.issn.1000-0534.2018.00041.
[21]姚叶青, 郝莹, 张义军, 等, 2012.安徽龙卷发生的环境条件和临近预警[J].高原气象, 31(6): 1721-1730.
[22]俞小鼎, 郑媛媛, 张爱民, 等, 2006a.安徽一次强烈龙卷的多普勒天气雷达分析[J].高原气象, 25(5): 915-924.
[23]俞小鼎, 姚秀萍, 熊廷南, 等, 2006b.多普勒天气雷达原理与业务应用[M].北京: 气象出版社: 130-135.
[24]俞小鼎, 郑媛媛, 廖玉芳, 等, 2008.一次伴随强烈龙卷的强降水超级单体风暴研究[J].大气科学, 32(3): 508-522.
[25]俞小鼎, 周小刚, 王秀明, 2012.雷暴与强对流临近天气预报技术进展[J].气象学报, 70(3): 311-337.
[26]曾明剑, 吴海英, 王晓峰, 等, 2016.梅雨期龙卷环境条件与典型龙卷对流风暴结构特征分析[J].气象, 42(3): 280-293.
[27]张小玲, 杨波, 朱文剑, 等, 2016.2016年6月23日江苏阜宁EF4级龙卷天气分析[J].气象, 42(11): 1304-1314.
[28]郑媛媛, 俞小鼎, 方翀, 等, 2004.2003年7月8日安徽系列龙卷的新一代天气雷达分析[J].气象, 30(1): 38-40.
[29]郑媛媛, 朱红芳, 方翔, 等, 2009.强龙卷超级单体风暴特征分析与预警研究[J].高原气象, 28(3): 617-625.
[30]郑媛媛, 张备, 王啸华, 等, 2015.台风龙卷的环境背景和雷达回波结构分析[J].气象, 41(8): 942-952.
[31]郑媛媛, 张雪晨, 朱红芳, 等, 2014.东北冷涡对江淮飑线生成的影响研究[J].高原气象, 33(1): 261-269.DOI: 10.7522/j.issn. 1000-0534.2013.00005.
[32]张一平, 俞小鼎, 吴蓁, 等, 2012.区域暴雨过程中两次龙卷风事件分析[J].气象学报, 70(5): 961-972.
[33]张一平, 乔春贵, 梁俊平, 2014.淮河上游短时强降水天气学分型与物理诊断量阈值初探[J].暴雨灾害, 33(2): 129-138.
[34]张一平, 孙景兰, 牛淑贞, 等, 2015.河南区域暴雨的若干雷达回波特征[J].气象与环境科学, 38(3): 25-36.
[35]张一平, 孙景兰, 牛淑贞, 2017.河南省强对流天气新一代天气雷达回波特征[M].北京: 气象出版社: 80-89.
[36]张一平, 牛淑贞, 郑世林, 等, 2019.“0706”周口龙卷现场调查和可预警性综合分析[J].气象, 45(8): 1135-1148.
[37]周海光, 2018.“6·23”江苏阜宁EF4级龙卷超级单体风暴中尺度结构研究[J].地球物理学报, 61(9): 3617-3639.
[38]周红根, 李昭春, 孙强, 等, 2018.江苏龙卷观测预警试验基地雷达网设计[J].成都信息工程大学学报, 233(6): 606-611.