论文

华东2018年冬季一次典型雾霾过程的气象成因分析

  • 周述学 ,
  • 邓学良 ,
  • 王传辉 ,
  • 姚叶青 ,
  • 丁鹤鸣 ,
  • 杨开围
展开
  • <sup>1.</sup>安徽省气象科学研究所,安徽省大气科学与卫星遥感重点实验室,安徽 合肥 230031;<sup>2.</sup>寿县国家气候观象台,安徽 寿县 232200;<sup>3.</sup>中国气象局淮河流域典型农田生态气象野外科学试验基地,安徽 寿县 232200;<sup>4.</sup>安徽省公共气象服务中心,安徽 合肥 230031;<sup>5.</sup>阜阳市气象局,安徽 阜阳 236000;<sup>6.</sup>合肥市气象局,安徽 合肥 230031

收稿日期: 2019-02-25

  网络出版日期: 2020-10-28

基金资助

安徽省公益性研究联动计划项目(1604f0804003);国家自然科学基金项目(41875171);安徽省重点研究与开发项目(1804a0802215)

Analysis of Meteorological Conditions for a Typical Fog and Haze Event Over Eastern China in Winter of 2018

  • Shuxue ZHOU ,
  • Xueliang DENG ,
  • Chuanhui WANG ,
  • Yeqing YAO ,
  • Heming DING ,
  • Kaiwei YANG
Expand
  • <sup>1.</sup>Anhui Institute of Meteorology,Key Laboratory of Atmospheric Science and Satellite Remote Sensing,Hefei 230031,Anhui,China;<sup>2.</sup>Shouxian national climatology observatory,Shouxian 232200,Anhui,China;<sup>3.</sup>Typical ecological meteorological field science experimental base of Huaihe River Basin of China Meteorological Administration,Shouxian 232200,Anhui,China;<sup>4.</sup>Anhui Public Meteorological Service Center,Hefei 230031,Anhui,China;<sup>5.</sup>Fuyang Meteorological Bureau,Fuyang 236000,Anhui,China;<sup>6.</sup>Hefei Meteorological Bureau,Hefei 230031,Anhui,China

Received date: 2019-02-25

  Online published: 2020-10-28

摘要

针对2018年11月23日至12月3日华东地区一次持续性、 大范围的雾霾过程, 利用地面污染物观测、 再分析资料、 地面气象观测以及气象探空等, 从环流异常、 地面气象条件以及边界层结构等方面, 分析了本次雾霾过程的气象成因。研究发现: (1)2018年冬季500 hPa亚欧中高纬以纬向环流为主, 华北、 黄淮位势偏高, 冷空气影响偏北。700 hPa孟加拉湾北侧和四川盆地位势偏高, 中纬度环流较平, 没有形成西低东高有利于水汽输送形势。850 hPa和925 hPa存在偏南风异常, 冬季风偏弱, 阻碍冷空气南下。环流异常造成气温和湿度偏高、 风速和能见度偏低, 为污染形成提供了有利的气候背景。(2)冷空气带来的区域输送叠加局地静稳积累是本次雾霾过程的显著特点, 不同强度的冷空气对于污染程度和区域的影响具有差异。11月24日和27日两次冷空气较弱, 淮河以北受到输送影响, 之后均压场控制, 地面条件趋于静稳, 加剧了污染程度; 11月29日冷空气稍强, 污染物输送南压至长江以南, 后期地面受鞍型场控制, 表现出风速小、 湿度高、 能见度低的特征, 污染范围和程度都达到峰值。(3)在污染发展和高峰阶段, 边界层均为逆温或等温层结, 整层均受到高湿和小风的控制, 不利于污染物垂直扩散, 加剧污染事件的发展。

本文引用格式

周述学 , 邓学良 , 王传辉 , 姚叶青 , 丁鹤鸣 , 杨开围 . 华东2018年冬季一次典型雾霾过程的气象成因分析[J]. 高原气象, 2020 , 39(5) : 1110 -1121 . DOI: 10.7522/j.issn.1000-0534.2019.00085

Abstract

A persistent and wide range fog and haze event happened in the eastern China during 23 November and 3 December 2018.Using air pollution observation, surface meteorological data, sounding data and ERA-Interim reanalysis data, meteorological formation mechanism of the pollution event was discussed in climate anomaly, surface weather condition and planetary boundary layer structure.The results show: (1) At 500 hPa, mid-high latitudes of Eurasia were dominated by zonal circulation and abnormal high existed at North China and Huanghuai regions, which leaded to cold air northward.Meanwhile, anomalous high at 700 hPa was found both at Sichuan Basin and north of Bay of Bengal, which smoothed latitude circulation and was unfavorable for more water vapor transported to eastern China.The anomalous southerly winds at 850 hPa and 925 hPa resulted in a weak East Asian winter monsoon and resisted cold air moving southward.All the circulation anomalies caused abnormal surface meteorological conditions (high temperature, high relative humidity, weak wind, low visibility) and provided a favorable climate background for air pollution formation.(2) The remarkable feature for the air pollution event was the joint role by regional transmission and the local stagnant meteorological situation.Different intensities of cold air had different effect for pollution level and area.In 24 and 27 November, regional transmission just can affect the north area of the Huaihe River with northerly wind under weak cold air.Then it was controlled by uniform pressure field and the ground conditions tended to be stable, which aggravated the pollution level.In 29 November, the cold air was strengthened and air pollution transportation could cross the Yangtze River.Then the ground was controlled by saddle field, showing the characteristics of low wind speed, high humidity and low visibility.Thus, this air pollution reached the peak value.(3) The structure of boundary layer can inhibit the vertical transport of air pollutants.During the development and peak stage of air pollution, there were inversion or isothermal layer and the whole layer is controlled by high humidity and breeze, which is not conducive to the vertical diffusion of pollutants.

参考文献

[1]Chan C K, Yao X H, 2008.Air pollution in mega cities in China[J].Atmospheric Environment, 42(1): 1-42.
[2]Che F X, 1999.Risk assessment on aerosol in Chinese cities[J].China Powderence and Technology, 5 (3): 4-10.
[3]Chen R, Peng R D, Meng X, al et, 2013.Seasonal variation in the acute effect of particulate air pollution on mortality in the China AirPollution and Health Effects Study (CAPES)[J].Science of the Total Environment, 450/451: 259-265.
[4]Deng X L, Cao W H, Huo Y F, al et, 2018.Study on meteorological condition for a severe prolong regional heavy air pollution episode in the eastern China during December 2016 to January 2017[J].Theoretical and Applied Climatology, 135(3): 1105-1122.
[5]Deng X L, Shi C E, Wu B W, 2012.Analysis of aerosol characteristics and their relationships with meteorological parameters over Anhui province in China[J].Atmospheric Research, 109/110: 0-63.
[6]Deng X L, Shi C E, Wu B W, al et, 2016.Characteristics of the water-soluble components of aerosol particles in Hefei, China[J].Journal of Environmental Sciences, 42(4): 32-40.
[7]Elminir H K, 2005.Dependence of urban air pollutants on meteorology[J].Science of the Total Environment, 350 (1/3): 225-237.
[8]Li B, Gasser T, Ciais P, al et, 2016.The contribution of China’s emissions to global climate forcing[J].Nature, 531(7594): 357-361.
[9]Li J, Wang Z F, Huang H L, al et, 2013.Assessing the effects of trans-boundary aerosol transport between various city clusters on regional haze episodes in spring over East China[J].Tellus B, 65(1): 1-14.
[10]Li X, Wang Y, Shen L, al et, 2018.Characteristics of boundary layer structure during a persistent haze event in the central Liaoning city cluster, northeast China[J].Journal of Meteorological Research, 32(2): 148-158.
[11]Li Z, Xu X D, Ding G, al et, 2005.Diurnal variations of air pollution and atmospheric boundary layer structure in Beijing during winter 2000/2001[J].Advances in Atmospheric Sciences, 22(1): 126-132.
[12]Liu T T, Gong S L, He J J, al et, 2017.Attributions of meteorological and emission factors to the 2015 winter severe haze pollution episodes in China's Jing-Jin-Ji area[J].Atmospheric Chemistry and Physics, 17(4): 1-17.
[13]Liu Y, Wang H D, Yu Z X, al et, 2018.Influence of air pollution on hospital admissions in adult asthma in Northeast China[J].Chinese Medical Journal, 131(9): 1030-1039.
[14]Qian Y, Deng G, Yi R, 2018.In situ chemical analysis of gas-aerosol particle interface[J].Analytical Chemistry, 90(18): 10967-10973.
[15]Quan J, Zhang Q, He H, al et, 2011.Analysis of the formation of fog and haze in North China Plain (NCP)[J].Atmospheric Chemistry and Physics, 11(15): 8205-8214.
[16]Shen G F, Ru M Y, Du W, al et, 2019.Impacts of air pollutants from rural Chinese households under the rapid residential energy transition[J].Nature Communications, 10: 1-8.
[17]Shi G Y, Wang B, Zhang H, 2008.Radiation and climate effect of atmospheric aerosol[J].Atmospheric Science, 32 (4): 826-840.
[18]Tie X X, Zhang Q, He H, 2015.A budget analysis of the formation of haze in Beijing[J].Atmospheric Environment, 100: 25-36.
[19]Xu J M, Yan F X, Wang F Y, al et, 2015.Impact of meteorological conditions on a nine-day particulate matter pollution event observed in December 2013, Shanghai, China[J].Particuology, 20(3): 69-79.
[20]Ye X, Song Y, Cai X, al et, 2016.Study on the synoptic flow patterns and boundary layer process of the severe haze events over the North China Plain in January 2013[J].Atmospheric Environment, 124: 129-145.
[21]Zhang X Y, Wang Y Q, Niu T, al et, 2012.Atmospheric aerosol compositions in China: spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols[J].Atmospheric Chemistry and Physics, 12(2): 779-799.
[22]曹伟华, 梁旭东, 李青春, 2013.北京一次持续性雾霾过程的阶段性特征及影响因子分析[J].气象学报, 71(5): 940-951.
[23]程真, 陈长虹, 黄成, 等, 2011.长三角区域城市间一次污染跨界影响[J].环境科学学报, 31(4): 686-694.
[24]邓学良, 石春娥, 姚晨, 等, 2015.安徽霾日重建和时空特征分析[J].高原气象, 34(4): 1158-1166.DOI: 10.7522/j.issn.1000-0534.2014.00007.
[25]邓学良, 2008.卫星遥感中国海域气溶胶光学特性及其辐射强迫研究[D].南京: 南京信息工程大学.
[26]郭利, 张艳昆, 刘树华, 2011.北京地区PM10质量浓度与边界层气象要素相关性分析[J].北京大学学报(自然科学版), 47(4): 607-612.
[27]郝巨飞, 袁雷武, 李芷霞, 等, 2018.激光雷达和微波辐射计对邢台市一次沙尘天气的探测分析[J].高原气象, 37(4): 1110-1119.DOI: 10.7522/j.issn.1000-0534.2018.00009.
[28]贺克斌, 贾英韬, 马永亮, 等, 2009.北京大气颗粒物污染的区域性本质[J].环境科学学报, 29(3): 482-487.
[29]花丛, 刘超, 张恒德, 等, 2017.京津冀地区冬半年污染传输特征及传输指数的改进[J].气象, 43(7): 47-56.
[30]华雯丽, 韩颖, 乔瀚洋, 等, 2018.敦煌沙尘气溶胶质量浓度垂直特征个例分析[J].高原气象, 37(5): 1428-1439.DOI: 10.7522/j.issn.1000-0534.2018.00017.
[31]环境保护部, 2016.HJ633-2012环境空气质量指数(AQI)技术规定(试行)[Z].北京: 中国环境科学出版社.
[32]霍彦峰, 邓学良, 杨关盈, 2017.传输指数在合肥市重污染过程中的应用分析[J].环境科学学报, 37(4): 1277-1286.
[33]李锋, 朱彬, 安俊岭, 等, 2015.2013年12月初长江三角洲及周边地区重霾污染的数值模拟[J].中国环境科学, 35(7): 1965-1974.
[34]李子华, 杨军, 石春娥, 等, 2008.地区性浓雾物理[M].北京: 气象出版社, 160.
[35]林建, 杨贵名, 毛冬艳, 2008.我国大雾的时空分布特征及其发生的环流形势[J].气候与环境研究, 13(2): 171-181.
[36]刘庆阳, 刘艳菊, 杨峥, 等, 2014.北京城郊冬季一次大气重污染过程颗粒物的污染特征[J].环境科学学报, 34(1): 12-18.
[37]刘世玺, 安俊琳, 朱彬, 2010.远距离输送作用对南京大气污染的影响[J].生态环境学报, 19(11): 2629-2635.
[38]刘煜, 李维亮, 周秀骥, 2005.夏季华北地区二次气溶胶的模拟研究[J].中国科学(地球科学), 35(): 156-166.
[39]马井会, 张国琏, 耿福海, 等, 2013.上海地区一次典型连续浮尘天气过程分析[J].中国环境科学, 33(4): 584-593.
[40]穆泉, 张世秋, 2013.2013年1月中国大面积雾霾事件直接社会经济损失评估[J].中国环境科学, 33(11): 2087-2094.
[41]浦静姣, 徐宏辉, 马千里, 2017.长江三角洲背景地区大气污染对能见度的影响[J].中国环境科学, 37(12): 4435-4441.
[42]秦瑜, 赵春生, 2003.大气化学基础[M].北京: 气象出版社, 181-182.
[43]石春娥, 邓学良, 朱彬, 等, 2016.合肥市不同天气条件下大气气溶胶粒子理化特征分析[J].气象学报, 74(1): 149-163.
[44]孙俊英, 张璐, 沈小静, 等, 2016.大气气溶胶散射吸湿增长特性研究进展[J].气象学报, 74(5): 672-682.
[45]王敬, 毕晓辉, 冯银厂, 等, 2014.乌鲁木齐市重污染期间PM<sub>2.5</sub>污染特征与来源解析[J].环境科学研究, 27(2): 113-119.
[46]王跃, 王莉莉, 赵广娜, 等, 2014.北京冬季 PM<sub>2.5</sub> 重污染时段不同尺度环流形势及边界层结构分析[J].气候与环境研究, 19(2): 173-184.
[47]王跃思, 姚利, 刘子锐, 2013.京津冀大气霾污染及控制策略思考[J].中国科学院院刊, 28(3): 353-363.
[48]王跃思, 姚利, 王莉莉, 等, 2014.2013年元月我国中东部地区强霾污染成因分析[J].中国科学(地球科学), 44(1): 15-26.
[49]吴兑, 邓雪娇, 毕雪岩, 2007.细粒子污染形成灰霾天气导致广州地区能见度下降[J].热带气象学报, 23(1): 1-6.
[50]徐怀刚, 邓北胜, 周小刚, 2002.雾对城市边界层和城市环境的影响[J].应用气象学报, 13(): 170-176.
[51]许建明, 高伟, 瞿元昊, 2017a.上海地区降雨清除PM2.5的观测研究[J].环境科学学报, 37( 9) : 3271-3279.
[52]许建明, 耿福海, 甄灿明, 等, 2010.上海浦东地区气溶胶散射系数及影响因子[J].环境科学学报, 30(1): 211-216.
[53]许建明, 瞿元昊, 常炉予, 等, 2017b.空气污染气象条件预报评估技术与应用[J].气象科技进展, 7(6): 150-156.
[54]张浩, 石春娥, 吴必文, 等, 2017.合肥市能见度与相对湿度、 PM<sub>2.5</sub>质量浓度的定量关系[J].生态环境学报, 26(6): 1001-1008.
[55]张恒德, 吕梦瑶, 张碧辉, 等, 2016.2014年2月下旬京津冀持续重污染过程的静稳天气及传输条件分析[J].环境科学学报, 36(12): 4340-4351.
[56]张人禾, 李强, 张若楠, 2014.2013年1月中国东部持续性强雾霾天气产生的气象条件分析[J].中国科学(地球科学), 44(1): 27-36.
[57]张芝娟, 陈斌, 贾瑞, 等, 2019.全球不同类型气溶胶光学厚度的时空分布特征[J].高原气象, 38(3): 660-672.DOI: 10.7522/j.issn.1000-0534.2019.00002.
[58]中国气象局, 2010.常规高空气象观测业务规范[M].北京: 气象出版社.
[59]周彬, 刘端阳, 魏建苏, 等, 2015.降水对气溶胶颗粒物清除作用的初步分析[J].长江流域资源与环境, 24(S1): 160-170.
[60]周敏, 陈长虹, 乔利平, 等, 2013.2013年1月中国中东部大气重污染期间上海颗粒物的污染特征[J].环境科学学报, 33(11): 3118-3126.
[61]周述学, 王兴, 弓中强, 等, 2017.长江三角洲西部地区PM2.5输送轨迹分类研究[J].气象学报, 75(6): 996-1010.
[62]朱彤, 尚静, 赵德峰, 2010.大气复合污染及灰霾形成中非均相化学过程的作用[J].中国科学(化学), 40(12): 1731-1740.
文章导航

/