利用2018年6 -8月川西高原四个不同海拔站点DSG5型降水现象仪的雨滴谱观测数据, 对高海拔、 大梯度陡峭地形条件下的雨滴数浓度、 微物理特征参量和雨滴下落速度进行了对比分析。结果表明: 不同海拔上, 雨滴数浓度平均谱符合Gamma函数分布, 弱降水和强降水表现出完全不同的雨滴谱特征。弱降水中, 随海拔的升高, 小雨滴粒子(直径D<1 mm)的数浓度增大, 中等直径粒子(1 mm<D<3 mm)的数浓度反而略有减小; 雨滴粒子的数浓度Nw增大, 平均直径Dm减小。强降水中, 随海拔的升高, 小粒子和中等直径粒子的数浓度减小, 大粒子(D>3.25 mm)的数浓度明显增大; 雨滴粒子的数浓度Nw减小, 而平均直径Dm快速增大。中等强度降水是大粒子和小粒子数目的转换阶段。不同雨强等级高海拔雨滴下落速度都大于低海拔。
Using raindrop spectrum data observed with four DSG5 precipitation phenomenon instruments deployed at different altitudes in western Sichuan Plateau from June to August 2018, the raindrop number concentration, several microphysical parameters and falling velocity at different regions with high altitude and steep terrain were compared and analyzed.The results show that: The average raindrop spectrums at different altitudes are in good agreement with the Gamma distribution, while completely different characteristics of raindrop spectrum are found between weak and strong rainfall types.For the weak rain types, with increasing altitude, the raindrop number concentration of small particles (D<1 mm) increases and medium diameter particles (1 mm<D<3 mm) decreases slightly.The number concentration Nw increases and the average diameter (Dm) decreases with altitude.For the strong rain types, with increasing altitude, the raindrop number concentration of small and medium particles decreases and larger particles (D>3.25 mm) increases significantly.The number concentration Nw decreases and the average diameter (Dm) increases rapidly.The medium rain types are found to be the conversion phase of raindrop numbers between small and large particles.The falling velocity observed at higher altitude locations is greater than lower altitude in all types of rainfall.
[1]Atlas D, Srivastava R C, Sekhon R S, 1973.Doppler radar characteristics of precipitation at vertical incidence[J].Reviews of Geophysics, 11(1): 1-35.
[2]Chen B, Hu Z Q, Liu L P, al et, 2017.Raindrop size distribution measurements at 4500m on the Tibetan Plateau during TIPEX-III[J].Journal of Geophysical Research: Atmospheres, 122(20): 11092-11106.
[3]Harikumar R, 2016.Orographic effect on tropical rain physics in the Asian monsoon region[J].Atmospheric Science Letters, 17(10): 556-563.
[4]Islam T, Rico-Ramirez M A, Thurai M, al et, 2012.Characteristics of raindrop spectra as normalized gamma distribution from a Joss-Waldvogel disdrometer[J].Atmospheric Research, 108: 57-73.
[5]Raupach T H, Berne A, 2015.Correction of raindrop size distributions measured by Parsivel disdrometers, using a two-dimensional video disdrometer as a reference[J].Atmospheric Measurement Techniques, 8(1): 343-365.
[6]Seela B K, Janapati J, Lin P L, al et, 2017.A comparison study of summer season raindrop size distribution between Palau and Taiwan, two Islands in Western Pacific: RSD characteristics of Taiwan and Palau[J].Journal of Geophysical Research: Atmospheres, 122(21): 11787: 11805.
[7]Testud J, Oury S, Black R A, al et, 2001.The concept of “normalized” distribution to describe raindrop spectra: A tool for cloud physics and cloud remote sensing[J].Journal of Application Meteorology, 40(6): 1118-1140.
[8]Wen L, Zhao K, Wang M Y, al et, 2019.Seasonal variations of observed raindrop size distribution in East China[J].Advances Atmospheric Sciences, 36(4): 346-362..
[9]Wang M J, Zhao K, Xue M, al et, 2016.Precipitation microphysics characteristics of a Typhoon Matmo (2014) rainband after landfall over eastern China based on polarimetric radar observations[J].Journal of Geophysical Research: Atmospheres, 121(20): 12415-12433.
[10]Zwiebel J, Baelen J V, Anquetin S, al et, 2016.Impacts of orography and rain intensity on rainfall structure.The case of the HyMeX IOP7a event[J].Quarterly Journal of the Royal Meteorological Society, 142(S1): 310-319.
[11]杜波, 马舒庆, 刘达新, 等, 2018.雨滴谱降水现象仪综合测试系统设计[J].气象科技, 46(1): 56-63.
[12]陈磊, 陈宝君, 杨军, 等, 2013.2009 -2010年梅雨锋暴雨雨滴谱特征[J].大气科学学报, 36(4): 481-488.
[13]廖菲, 邓华, 万齐林, 等, 2011.珠江三角洲地区两次夏季典型雷电天气系统的雨滴谱特征观测研究[J].高原气象, 30(3): 798-808.
[14]李淘, 阮征, 葛润生, 等, 2016.激光雨滴谱仪测速误差对雨滴谱分布的影响[J].应用气象学报, 27(1): 25-34.
[15]李德俊, 熊守权, 柳草, 等, 2013.武汉一次短时暴雪过程的地面雨滴谱特征分析[J].暴雨灾害, 32(2): 188-192.
[16]罗启铭, 谢蕾, 刘黎平, 等, 2015.利用雨滴谱检验毫米波雷达速度数据方法研究[J].暴雨灾害, 34(4): 360-366.
[17]李慧, 银燕, 单云鹏, 等, 2018.黄山层状云和对流云降水不同高度的雨滴谱统计特征分析[J].大气科学, 42(2): 268-280.
[18]马宁堃, 刘黎平, 郑佳锋, 2019.利用Ka波段毫米波雷达功率谱反演云降水大气垂直速度和雨滴谱分布研究[J].高原气象, 38(2): 325-339.DOI: 10.7522/j.issn.1000-0534.2018.00127.
[19]青藏高原气象科学研究拉萨会战组, 1981.夏半年青藏高原500毫巴低涡切变线的研究[M].北京: 科学出版社, 1-122.
[20]阮征, 刘褚燚, 马建立, 等, 2015.降水回波谱参数估算雨滴谱参数的算法研究[J].高原气象, 34(4): 1019-1028.DOI: 10.7522/j.issn.1000-0534.2014.00037.
[21]吴亚昊, 刘黎平, 周筠珺, 等, 2016.雨滴谱的变化对降水估测的影响研究[J].高原气象, 35(1): 15-22.DOI: 10.7522/j.issn. 1000-0534.2014.00093.
[22]王可法, 张卉慧, 张伟, 等, 2011.Parsivel激光雨滴谱仪观测降水中异常数据的判别及处理[J].气象科学, 31(6): 732-736.
[23]徐沅鑫, 郭海燕, 马振峰, 2018.TRIGRS模型预测降雨型浅层滑坡的应用性评价[J].高原气象, 37(3): 815-825.DOI: 10.7522/j.issn.1000-0534.2017.00065.
[24]岳治国, 梁谷, 2018.陕西渭北一次降雹过程的粒子谱特征分析[J].高原气象, 37(6): 1716-1724.DOI: 10.7522/j.issn.1000-0534.2018.00023.
[25]曾皓, 1995.川西高原南部暴雨的初步研究[J].四川气象, 15(1): 15-22.
[26]赵宇, 蓝欣, 杨成芳, 2018.一次江淮气旋极端雨雪过程的云系特征和成因分析[J].高原气象, 37(5): 1325-1340.DOI: 10. 7522/j.issn.1000-0534.2018.00024.
[27]郑娇恒, 陈宝君, 2007.雨滴谱分布函数的选择: <i>M-P</i>和Gamma分布的对比研究[J].气象科学, 27(1): 17-25.