降水是一种复杂的自然事件, 时间和空间上都表现出显著的多变性, 全球气候变化进程中, 陆地降水时空特征也随之发生改变。中国东部季风区, 800 mm等降水量线是中国北方和南方、 河流结冰与不结冰等重要地理分界线。本文基于1961 -2015年中国地面降水0.5°×0.5°格点数据集, 利用GIS空间分析、 时序变化分析等方法, 明确东部季风区800 mm等降水量线的空间分布及其重心位置, 并以空间重心作为研究对象, 分析等降水量线的时空特征。结果表明: (1)中国东部季风区800 mm等降水量线在空间上呈东北-西南走向, 且黄淮平原和藏东南地区的波动较为剧烈; (2)800 mm等降水量线的空间重心分布于四川盆地; (3)1961 -2015年东部季风区800 mm等降水量线具有显著的向东、 向南移动的趋势; (4)800 mm等降水量线空间变化趋势没有显著的周期性和突变性。此外, ENSO是等降水量线年际变化的主要因素, 而PDO是等降水量线年代际变化的主要因素。
Precipitation is a complex natural event that exhibits significant variability in both time and space.As global climate change, the temporal and spatial characteristics of terrestrial precipitation have changed.In the Eastern Monsoon Region of China, annual precipitation line of 800 mm is an important geographical boundary.For example, it is reference line/geographical boundary between southern and northern China and between rivers that freeze and do not freeze, respectively.Based on the dataset of 0.5°×0.5° grid of China's ground precipitation during the period of 1961 -2015, spatial distribution and gravity-center in terms of the annual precipitation line of 800 mm in the Eastern Monsoon Region were calculated using spatial analysis of Geographic Information System (GIS) and time series analysis.Periodic characteristic and long changed trend were also analyzed in terms of the gravity-centers of precipitation line of 800 mm, using several methods, i.e.linear regression, Ensemble Empirical Mode Decomposition (EEMD), and Mann-Kendall (MK).The results showed that: (1) Annual precipitation line of 800 mm in the Eastern Monsoon Region of China was extended from northeast to southwest in space, and the fluctuations of the annual precipitation lines in both of Huanghuai Plain and southeastern Tibetan Plateau were stronger.(2) The spatial gravity-centers in terms of annual precipitation line with 800 mm were distributed in Sichuan Basin during the period of 1961 -2015.(3) Changes of gravity-center of the annual precipitation line of 800 mm were relatively complex in different time-scale.However, there were significantly moving trends in longitudinal direction and latitudinal direction in terms of the annual precipitation line of 800 mm, i.e.moving to east in latitudinal direction and moving to south in longitudinal direction, respectively.(4) Based on the methods of EEMD and MK, there were no significant characteristics of period and abrupt in spatial change for the annual precipitation line of 800 mm in terms of longitudinal direction and latitudinal direction, respectively.We also found that spatial distribution of those precipitation lines were significantly affected by atmospheric circulation, local climate change, and topography.In addition, annual changes of those gravity-centers in terms of annual precipitation line of 800 mm were mainly resulted from changes in El Ni?o-Southern Oscillation (ENSO), while decadal changes of that were mainly affected by changes in Pacific Decadal Oscillation (PDO).
[1]De S, Michael J, Michael F, al et, 2008.Geospatial Analysis: A comprehensive guide to principles, techniques and software tools, second edition[J].Computers and Geosciences, 36(12): 645-647.
[2]Hutchinson M F, 1995.Interpolating mean rainfall using thin plate smoothing splines[J].International Journal of Geographical Information Systems, 9 (4): 385-403.
[3]Hutchinson M F, 1998.Interpolation of rainfall data with thin plate smoothing splines-Part I: Two-dimensional smoothing of data with short range correlation[J].Journal of Geographic Information and Decision Analysis, 2(2): 139-151.
[4]Ji F, Wu Z, Huang N, al et, 2014.Evolution of land surface air temperature trend[J].Nature Climate Change, 4(6): 462-466.
[5]Kendall M G, 1975.Rank Correlation Methods[M].Griffin, London, UK: Oxford Press.
[6]Kumar P, 2013.Hydrology: Seasonal rain changes[J].Nature Climate Change, 3(9): 783-784.
[7]Maggioni V, Meyers P C, Robinson M D, 2016.A review of merged high-resolution satellite precipitation product accuracy during the Tropical Rainfall Measuring Mission (TRMM) era[J].Journal of Hydrometeorology, 17(4): 1101-1117.
[8]Mann H B, 1945.Nonparametric tests against trend[J].Econometrica, 13(3): 245-259.
[9]Mantua N J, Hare S R, 2002.The Pacific decadal oscillation[J].Journal of Oceanography, 58(1): 35-44.
[10]Ren Z, Zhang M, Wang S, al et, 2015.Changes in precipitation extremes in south China during 1961 -2011[J].Journal of Geographical Sciences, 25 (1), 85-100.
[11]Roque-Malo S, Kumar P, 2017.Patterns of change in high frequency precipitation variability over North America[J].Scientific Reports, 7(1): 10853.
[12]Schubert L K, Westerly D C, Tome W A, al et, 2009.A comprehensive assessment by tumor site of patient setup using daily MVCT imaging from more than 3800 helical tomotherapy treatments[J].Intermational Journal of Radiation Oncology Biology Physics, 73(4): 1260-1269.
[13]Shen X J, Liu B H, Li G D, al et, 2015.Impact of climate change on temperate and alpine grasslands in China during 1982 -2006[J].Advances in Meteorology, 1-10.
[14]Wagener T, Sivapalan M, Troch P A, al et, 2010.The future of hydrology: An evolving science for a changing world[J].Water Resources Research, 46(5): W05301.DOI: 10.1029/2009WR008906.
[15]Wang J, Zhang M, Wang S, al et, 2016.Change of snowfall/rainfall ratio in the Tibetan Plateau based on a gridded dataset with high resolution during 1961 -2013[J].Journal of Geographical Sciences, 26 (9): 1277-1288.
[16]Wang S, Zhang M, Sun M, al et, 2013.Changes in precipitation extremes in alpine areas of the Chinese Tianshan Mountains, Central Asia, 1961 -2011[J].Quaternary International, 311: 97-107.
[17]Wang Y, Zhou L, 2005.Observed trends in extreme precipitation events in China during 1961 -2001 and the associated changes in large-scale circulation[J].Geophyicals Research Letters, 32 (9): L9707.DOI: 10.1029/2005GL022574.
[18]Wu Z, Huang N E, 2009.Ensemble empirical mode decomposition: A noise-assisted data analysis method[J].Advances in Adaptive Data Analysis, 1(1): 1-41.
[19]Wu Z, Huang N, Long S R, al et, 2007.On the trend, detrending, and variability of nonlinear and nonstationary time series [J].Proceedings of the National Academy of Sciences of the United States of America, 104(38): 14889-14894.
[20]Zhang S, Zhang J, Li F, 2004.Vector analysis theory on landscape pattern in Sanjiang plain marsh, China[J].Wetland Science, 9(3): 161-170.
[21]Zhao Y, Xie Q, Lu Y, al et, 2017.Hydrologic Evaluation of TRMM Multisatellite Precipitation Analysis for Nanliu River Basin in Humid Southwestern China[J].Scientific Reports, 7(1): 2470.
[22]Zhu Y, Wang H, Ma J, al et, 2015.Contribution of the phase transition of Pacific Decadal Oscillation to the late 1990s" shift in East China summer rainfall [J].Journal of Geophysical Research: Atmospheres, 120(17): 8817-8827.
[23]董蕾, 张明军, 王圣杰, 等, 2014.基于格点数据的西北干旱区极端降水事件分析[J].自然资源学报, 29(12): 2048-2057.
[24]高歌, 龚乐冰, 赵珊珊, 等, 2007.日降水量空间插值方法研究[J].应用气象学报, 18(5): 732-736.
[25]国家气象信息中心, 2012.中国地面降水05°×0.5°格点数据集(V2.0).[DS/OL].[2018-03-20].http: //data.cma.cn/data/detail/dataCode/SURF_CLI_CHN_PRE_DAY_GRID_0.5.html.
[26]黄悦, 曾刚, 黄发明, 2019.海表温度年代际振荡对全球陆地季风降水的可能影响[J/OL].[2019-09-25].地球物理学进展, 1-19.
[27]李娜, 2016.东亚冬季风多时间尺度分析[D].兰州: 兰州大学.
[28]李雪萍, 史兴民, 王阿如娜, 2016.中国典型等降水量线年代际空间演变[J].中国沙漠, 36(1): 232-238.
[29]林厚博, 游庆龙, 焦洋, 等, 2015.基于高分辨率格点观测数据的青藏高原降水时空变化特征[J].自然资源学报, 30(2): 271-281.
[30]潘欣, 尹义星, 王小军, 2019.1960 -2014年淮河流域极端降水发生时间的时空特征[J].高原气象, 38(2): 377-385.DOI: 10. 7522 /j.issn.1000-0534.2018.00076.
[31]任国玉, 吴虹, 陈正洪, 2000.我国降水变化趋势的空间特征[J].应用气象学报, 11(3), 322-330.
[32]汤瑞琪, 2015.安徽省淮河流域旱涝演变与南北气候分界线变动研究[D].合肥: 合肥工业大学.
[33]万英, 邵雪梅, 黄玫, 2002.80年代以来中国的气候变暖及其对自然区域界线的响应[J].中国科学(地球科学), 32(4): 317-326.
[34]王浩, 严登华, 秦大庸, 等, 2005.近50 年来黄河流域400 mm等雨量线空间变化研究[J].地球科学进展, 20(6): 649-655.
[35]王欢, 李栋梁, 2019.气候变暖背景下全球海温对中国东部夏季降水年代际转折的影响[J].热带气象学报, 35(3): 398-408.
[36]王静爱, 左伟, 2009.中国地理图集[J].北京: 中国地图出版社, 65-65.
[37]王先芳, 2014.晚全新世湖北神农架高精度石笋碳同位素记录[D].南京: 南京师范大学.
[38]吴凯, 王晓琳, 许怡, 等, 2017.中国大陆降水时空格局演变新事实[J].南水北调与水利科技, 15(3): 30-36.
[39]吴秀芹, 张洪岩, 李瑞改, 等, 2007. ArcGIS 9地理信息系统应用与实践[M].北京: 清华大学出版社.
[40]肖志祥, 谭江红, 2018.长江流域夏季降水异常主模态变化特征及其成因分析[J].高原气象, 37(5): 1304-1312.DOI: 10.7522 /j.issn.1000-0534.2018.00019.
[41]许田田, 范广洲, 张永莉, 等, 2018.东亚与太平洋地区热力差异对东亚季风的影响[J].高原气象, 37(6): 1643-1654.DOI: 10. 7522 /j.issn.1000-0534.2018.00053.
[42]薛峰, 2001.东亚夏季风的年际到年代际变化及其与全球大气环流和海表温度的联系[J].大气科学进展, 18(4): 567-575.
[43]薛峰, 段欣妤, 苏同华, 2018.强El Ni?o衰减年东亚夏季风的季节内变化: 1998年和2016年的对比分析[J].大气科学, 42(6): 1407-1420.
[44]杨修群, 朱益民, 谢倩, 等, 2004.太平洋年代际振荡的研究进展[J].大气科学, 28(6): 979-992.
[45]姚嘉惠, 肖林翔, 苟萌萌, 等, 2018.太平洋年代际振荡对中国东部季风区降水影响的新证据[J].中国科学: 地球科学, 48(5): 617-627.
[46]于淼, 金竑, 2015.太平洋年代际涛动对中国东部季风区夏季降水的影响[J].黑龙江气象, 32(1): 18-20.
[47]袁喆, 严登华, 杨志勇, 等, 2014.1961 -2010年中国400 mm和800 mm等雨量线时空变化[J].水科学进展, 25(4): 494-502.
[48]张雪芹, 孙杨, 郑度, 等, 2011.中国干旱区温度带界线对气候变暖的响应[J].地理学报, 66(9): 1166-1178.
[49]赵煜飞, 朱江, 许艳, 2014.近50a中国降水格点数据集的建立及质量评估[J].气象科学, 34 (4): 414-420.
[50]郑景云, 卞娟娟, 葛全胜,等, 2013.1981-2010年中国气候区划[J].科学通报, 58(30): 3088-3099.
[51]朱乾根, 施能, 徐建军, 等, 1997.近百年北半球冬季大气活动中心的长期变化及其与中国气候变化的关系[J].气象学报, 55(6): 750-758.