三江源区地处青藏高原腹地, 是中国长江、 黄河和澜沧江三大河流的发源地,并且作为全球气候变化的“敏感区”, 气候变化无疑会对该区域的气候、 环境和水资源产生深刻影响。本文综述了三江源区近50~60年气候、 环境和水资源变化的事实, 主要认知如下: (1)三江源区总体呈现升温趋势, 升温速率约为0.33 ℃·(10a)-1, 是青藏高原同期的1.2倍。(2)三江源区降水总体呈现增加趋势, 趋势约为6.653 mm·(10a)-1, 为青藏高原同期降水增加率的71%。(3)三江源区年最低和最高气温呈现显著增加趋势, 且冷季增幅大于暖季。降水量的变化趋于稳定, 降水变率减小, 严重干旱或暴雨事件均呈减少趋势。(4)三江源区南部积雪日数最多且呈显著增加趋势, 黄河源区整体上呈现积雪初日推迟、 终日提前、 积雪期缩短和积雪日数减少趋势。(5)在升温影响下, 冻土严重退化, 并引起沼泽湿地的发育, 在降水增加和气温升高引起的融水增加的双重影响下, 三江源区湖泊沼泽持续扩张。(6)尽管三江源区降水总体呈增加趋势, 但径流变化存在较大的区域差异, 长江源区径流显著增加, 而黄河源区则为减少趋势, 直门达和香达水文站径流变化倾向率分别为6.69×108 m3·(10a)-1和1.1×108 m3·(10a)-1。最后, 对气候变化影响下水循环变化及其对环境和水资源影响的研究现状进行了讨论, 并呼吁加强大气水文过程的耦合研究, 量化气候变化、 人类活动及陆气耦合多圈层相互作用的研究以加强其影响区域气候环境和水循环的认识, 为三江源区适应气候变化和青藏高原生态文明建设提供参考。
孟宪红
,
陈昊
,
李照国
,
赵林
,
周秉荣
,
吕世华
,
邓明珊
,
刘雨萌
,
李光伟
. 三江源区气候变化及其环境影响研究综述[J]. 高原气象, 2020
, 39(6)
: 1133
-1143
.
DOI: 10.7522/j.issn.1000-0534.2019.00144
The Three-river sources regions (TRSR), located on the Qinghai-Xiang Plateau (QXP), are the source regions of Yangtze, Yellow and Lancang River.Under the background of global climate change, the QXP was considered as the “sensitive region” and the “promoter region” of climate change, which will definitely affect the regional climate, environment, and water resources on the TRSR.This paper reviews the facts of variations of climate, environment and water resources in the recent 5~6 decades.The main conclusions are as follows: (1) Air temperature increased on the TRSR with a trend of 0.33 ℃·(10a)-1, which is 1.2 times of the rate on QXP.(2) Precipitation increased on the TRSR with a trend of 6.653 mm·(10a)-1, but the trend was 71% of the QXP.(3) The minimum and maximum air temperature increased significantly, with the trend in the cold seasons higher than the warm seasons.(4) Snow days on the south of the TRSR increased, but decreased on the source region of the Yellow river.(5) Under the climate warming, the permafrost degraded, in combing with the precipitation enhancement, the lakes and the wetlands were developed.(6) Although precipitation on the TRSR enhanced, runoff shows different trends, with it increased on the sources of Yangtze river (the trend of runoff in Zhimenda station is 6.69×108 m3·(10a)-1), and decreased on the Yellow river (the trend of runoff in Xiangda station is 1.1×108 m3·(10a)-1).At last, the water cycle changes under the warming and its influences on water resources were discussed, according to which it is important to do more investigations on the multi-sphere interactions to distinct the contribution to water resources from climate change and human activities.These kinds of knowledge will benefit for the TRSR to adapt climate change and supply references for the TRSR park construction.
[1]Bai P, Liu W H, Guo M J, 2014.Impacts of climate variability and human activities on decrease in streamflow in the Qinhe River, China[J].Theoretical and Applied Climatology, 117(1): 293-301.
[2]Cao L G, Pan S M, 2014.Changes in precipitation extremes over the “Three-River Headwaters” region, hinterland of the Tibetan Plateau, during 1960-2012[J].Quaternary International, 321: 105-115.
[3]Charney J, Stone P, Quirk W, 1975.Drought in Sahara: Biogeophysical feedback mechanism[J].Science, 187(4175): 434-435.
[4]Coumou D, Lehmann J, Beckmann J, 2015.The weakening summer circulation in the Northern Hemisphere mid-latitudes[J].Science, 348(6232): 324-327.
[5]Cuo L, Zhang Y X, Gao Y H, et al, 2013.The impacts of climate change and land cover/use transition on the hydrology in the upper Yellow River Basin, China[J].Journal of Hydrology, 502: 37-52.
[6]Cuo L, Zhang Y X, Zhu F X, et al, 2014.Characteristics and Changes of Streamflow on the Tibetan Plateau: A Review[J].Journal of Hydrology: Regional Studies, 2: 49-68.
[7]Deng M S, Meng X H, Li Z G, et al, 2019.Responses of soil moisture to regional climate change over the three rivers source region on the tibetan plateau[J].International Journal of Climatology, 40(4): 2403- 2417.
[8]Dole R, Hoerling M, Perlwitz J, et al, 2011.Was there a basis for anticipating the 2010 Russian heat wave?[J].Geophysical Research Letters, 38: L06702.
[9]Ding Z Y, Wang Y Y, Lu R J, 2018.An analysis of changes in temperature extremes in the three river headwaters region of the Tibetan Plateau during 1961-2016[J].Atmospheric Research, 209(9): 103-114.
[10]Feng A Q, Li Y Z, Gao J B, et al, 2017.The determinants of streamflow variability and variation in three-river source of China: Climate change or ecological restoration?[J].Environmental Earth Sciences, 76: 696.
[11]Francis J A, Vavrus S J, 2012.Evidence linking Arctic amplification to extreme weather in mid‐latitudes[J].Geophysical Research Letters, 39: L06801.
[12]Han P F, Long D, Han Z Y, et al, 2019.Improved understanding of snowmelt runoff from the headwaters of China's Yangtze River using remotely sensed snow products and hydrological modeling[J].Remote Sensing of Environment, 224: 44-59.
[13]IPCC, 2013.Climate change 2013: The physical science basis contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change [M].Cambridge, UK and New York, NY: Cambridge University Press.
[14]Ji P, Yuan X, 2018.High‐resolution land surface modeling of hydrological changes over the Sanjiangyuan Region in the eastern Tibetan Plateau: 2.Impact of climate and land cover change[J].Journal of Advances in Modeling Earth Systems, 10(11): 2829-2843.
[15]Jiang C, Li D Q, Gao Y N, et al, 2017.Impact of climate variability and anthropogenic activity on streamflow in the three rivers headwater region, Tibetan Plateau, China[J].Theoretical and Applied Climatology, 129(1/2): 667-681.
[16]Kang S C, Li J J, Yao T D, et al, 1998.A study of the climate variation in the Tibetan Plateau during the last 50 years[J].Journal of Glaciology and Geocryology, 20(4): 381-387.
[17]Krysanova V, White M, 2015.Advances in water resources assessment with SWAT-an overview[J].Hydrological Sciences Journal, 60(5): 771-783.
[18]Lei H M, Yang D W, Huang M Y, 2014.Impacts of climate change and vegetation dynamics on runoff in the mountainous region of the Haihe River basin in the past five decades[J].Journal of Hydrology, 511: 786-799.
[19]Liu W B, Wang L, Sun F B, et al, 2018.Snow hydrology in the upper yellow river basin under climate change: A land surface modeling perspective[J].Journal of Geophysical Research: Atmospheres, 123(22): 676-612.
[20]Luo S Q, Fang X W, Lyu S H, et al, 2016.Frozen ground temperature trends associated with climate change in the Tibetan Plateau Three River Source Region from 1980 to 2014[J].Climate Research, 67(3): 241-255.
[21]Ma Y M, Han C B, Zhong L, et al, 2013.Using MODIS and AVHRR data to determine regional surface heating field and heat flux distributions over the heterogeneous landscape of the Tibetan Plateau[J].Theoretical and Applied Climatology, 117(3/4): 643-652.
[22]Meng F, Su F, Yang D, et al, 2016.Impacts of recent climate change on the hydrology in the source region of the Yellow River basin[J].Journal of Hydrology: Regional Studies, 6: 66-81.
[23]Overland J E, Francis J A, Hanna E, et al, 2012.The recent shift in early summer Arctic atmospheric circulation[J].Geophysical Research Letters, 39(19): L19804.
[24]Overland J, Francis J A, Hall R, et al, 2015.The melting Arctic and midlatitude weather patterns: Are they connected?[J].Journal of Climate, 28(20): 7917-7932.
[25]Qi J, Wang L, Zhou J, et al, 2019.Coupled snow and frozen ground physics improves cold region hydrological simulations: An evaluation at the upper Yangtze River Basin (Tibetan Plateau) [J].Journal of Geophysical Research: Atmospheres, 124(23): 12985-13004.
[26]Qin Y, Yang D W, Gao B, et al, 2017.Impacts of climate warming on the frozen ground and eco-hydrology in the Yellow River source region, China[J].Science of The Total Environment, 605/606: 830-841.
[27]Shen M G, Piao S L, Cong N, et al, 2015.Precipitation impacts on vegetation spring phenology on the Tibetan Plateau[J].Global Change Biology, 21(10): 3647-3656.
[28]Shen M G, Zhang G X, Cong N, et al, 2014.Increasing altitudinal gradient of spring vegetation phenology during the last decade on the Qinghai-Tibetan Plateau[J].Agricultural and Forest Meteorology, 189/190: 71-80.
[29]Screen J A, Simmonds I, 2014.Amplified mid-latitude planetary waves favour particular regional weather extremes[J].Nature Climate Change, 4(8): 704-709.
[30]Tang Q H, Oki T, Kanae S, et al, 2008.Hydrological cycles change in the Yellow River basin during the last half of the twentieth century[J].Journal of Climate, 21(8): 1790-1806.
[31]Trenberth K E, Dai A M, Van Der Schrier G, et al, 2014.Global warming and changes in drought[J].Nature Climate Change, 4(1): 17-22.
[32]Wang H J, Yang Z S, Saito Y, et al, 2006.Interannual and seasonal variation of the Huanghe (Yellow River) water discharge over the past 50 years: Connections to impacts from ENSO events and dams[J].Global and Planetary Change, 50(3): 212-225.
[33]Wang T H, Yang H B, Yang D W, et al, 2018.Quantifying the streamflow response to frozen ground degradation in the source region of the Yellow River within the Budyko framework [J].Journal of Hydrology, 558: 301-313.
[34]Xie X H, Liang S L, Yao Y J, et al, 2015.Detection and attribution of changes in hydrological cycle over the three-north region of China: Climate change versus afforestation effect[J].Agricultural and Forest Meteorology, 203: 74-87.
[35]Xue Y K, de Sales F, Vasic R, et al, 2010.Global and seasonal assessment of interactions between climate and vegetation biophysical processes: A GCM study with different land-vegetation representations[J].Journal of Climate, 23(6): 1411-1433.
[36]Yao T D, Thompson L, Yang W, et al, 2012.Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J].Nature Climate Change, 2(9): 663-667.
[37]Yuan X, Ji P, Wang L, et al, 2018.High‐resolution land surface modeling of hydrological changes over the sanjiangyuan region in the eastern tibetan plateau: 1.model development and evaluation[J].Journal of Advances in Modeling Earth Systems, 10: 2806-2828.
[38]Zheng H X, Zhang L, Zhu R R, et al, 2009.Responses of streamflow to climate and land surface change in the headwaters of the Yellow River Basin[J].Water Resource Research, 45: W00A19.
[39]Zhong L, Ma Y M, Salama M S, et al, 2010.Assessment of vegetation dynamics and their response to variations in precipitation and temperature in the Tibetan Plateau[J].Climatic Change, 103(3/4): 519-535.
[40]边晴云, 吕世华, 文莉娟, 等, 2017.黄河源区不同降雪年土壤冻融过程及其水热分布对比分析[J].干旱区研究, 34(4): 906-911.
[41]蔡宜晴, 李其江, 刘希胜, 等, 2017.三江源区径流演变规律分析[J].长江科学院院报, 34(10): 1-5.
[42]车涛, 郝晓华, 戴礼云, 等, 2019.青藏高原积雪变化及其影响[J].中国科学院院刊, 34(11): 1247-1253.
[43]丁一汇, 2018.全球气候变化风险不断加剧的背景下, 中国的可持续性管理和行动[J].Engineering, 4(3): 12-21.
[44]丁一汇, 任国玉, 石广玉, 等, 2006.气候变化国家评估报告(I): 中国气候变化的历史和未来趋势[J].气候变化研究进展, 3(1): 3-8.
[45]段水强, 范世雄, 曹广超, 等, 2015.1976 -2014年黄河源区湖泊变化特征及成因分析[J].冰川冻土, 37(3): 745-756.
[46]冯松, 汤愚苍, 王冬梅, 1998.青藏高原是我国气候变化的启动区的新证据[J].科学通报, 43(6): 633-636.
[47]黄荣辉, 周德刚, 2012.气候变化对黄河径流以及源区生态和冻土环境的影响[J].自然杂志, 34(1): 1-9.
[48]郝亚蒙, 2018.基于遥感的三江源湖泊面积变化及影响因子分析[D].北京: 中国地质大学.
[49]金会军, 王绍令, 吕兰芝, 等, 2010.黄河源区冻土特征及退化趋势[J].冰川冻土, 32(1): 10-17.
[50]李峰平, 章光新, 董李勤, 2013.气候变化对水循环与水资源的影响研究综述[J].地理科学, 33(4): 457-464.
[51]李辉霞, 刘国华, 傅伯杰, 2011.基于 NDVI 的三江源地区植被生长对气候变化和人类活动的响应研究[J].生态学报, 31(19): 5495-5504.
[52]李静, 盛煜, 吴吉春, 等, 2016.黄河源区冻土分布制图及其热稳定性特征模拟[J].地理科学, 36(4): 588-596.
[53]李其江, 张杨, 付雷, 等, 2018.黄河源区沼泽退化机制及其恢复技术研究[J].湿地科学, 16(4): 466-471.
[54]廉丽姝, 2007.三江源地区土地覆被变化的区域气候响应[D].上海: 华东师范大学.
[55]林朝晖, 杨小松, 郭裕福, 2001.陆面过程模式对土壤含水量初值的敏感性研究[J].气候与环境研究, 6(2): 240-248.
[56]刘蕊蕊, 陆宝宏, 陈昱潼, 等, 2013.基于PDSI指数的三江源干旱气候特征分析[J].人民黄河, 35(6): 59-62, 66.
[57]刘晓娇, 陈仁升, 刘俊峰, 等, 2020.黄河源区积雪变化特征及其对春季径流的影响[J].高原气象, 39(2): 226-233.DOI: 10. 7522/j.issn.1000-0534.2019.00074.
[58]刘晓琼, 吴泽洲, 刘彦随, 等, 2019, 1960-2015年青海三江源地区降水时空特征[J].地理学报, 74(9): 1803-1820.
[59]马帅, 盛煜, 曹伟, 等, 2017.黄河源区多年冻土空间分布变化特征数值模拟[J].地理学报, 72(9): 1621-1633.
[60]马致远, 2004.三江源地区水资源的涵养和保护[J].地球科学进展, 19(增刊): 108-111.
[61]马柱国, 符涂斌, 谢力, 等, 2001.土壤湿度和气候变化关系研究中的某些问题[J].地球科学进展, 16(4): 563-567.
[62]牛国跃, 洪钟祥, 孙淑芬, 1997.陆面过程研究的现状与发展趋势[J].地球科学进展, 12(2): 20-25.
[63]强安丰, 魏加华, 解宏伟, 2018.青海三江源地区气温与降水变化趋势分析[J].水电能源科学, 36(2): 10-14.
[64]强安丰, 汪妮, 魏加华, 等, 2020.近50年三江源地区云水资源分布及降水效率研究[J].应用基础与工程科学学报, 28(3): 574-593.
[65]商放泽, 王可昳, 黄跃飞, 等, 2020.基于Budyko假设的三江源径流变化特性及量化分离[J].同济大学学报(自然科学版), 48(2): 305-316.
[66]宋晓猛, 张建云, 占车生, 等, 2013.气候变化和人类活动对水文循环影响研究进展[J].水利学报, 44(7): 779-790.
[67]汤秋鸿, 张学君, 戚友存, 等, 2018.遥感陆地水循环的进展与展望[J].武汉大学学报(信息科学版), 43(12): 1872-1884.
[68]王根绪, 李元寿, 王一博, 等, 2007.长江源区高寒生态与气候变化对河流径流过程的影响分析[J].冰川冻土, 29(2): 159-168.
[69]王海娥, 李生辰, 张青梅, 等, 2016.青海高原1961-2013年积雪日数变化特征分析[J].冰川冻土, 38(5): 1219-1226.
[70]王菊英, 2007.青海省三江源区水资源特征分析[J].水资源与水工程学报, 18(1): 91-94.
[71]王世金, 魏彦强, 方苗, 2014.青海省三江源牧区雪灾综合风险评估[J].草业学报, 23(2): 108-116.
[72]王玉琦, 鲍艳, 南素兰, 2019.青藏高原未来气候变化的热动力成因分析[J].高原气象, 38( 1): 29-41.DOI: 10.7522/j.issn. 1000-0534.2018.00066.
[73]魏卫东, 刘育红, 马辉, 等, 2019.三江源区退化高寒草甸浅层土壤冻融作用特征[J].生态与农村环境学报, 35(3): 352-359.
[74]吴国雄, 毛江玉, 段安民, 等, 2004.青藏高原影响亚洲夏季气候研究的最新进展[J].气象学报, 62(5): 528-540.
[75]吴国雄, 刘屹岷, 刘新, 等, 2005.青藏高原加热如何影响亚洲夏季的气候格局[J].大气科学, 29(1): 47-56.
[76]夏军, 刘春蓁, 任国玉, 2011.气候变化对我国水资源影响研究面临的机遇与挑战[J].地球科学进展, 26(1): 1-12.
[77]夏军, 石卫, 2016.变化环境下中国水安全问题研究与展望[J].水利学报, 47(3): 292-301.
[78]徐丽娇, 胡泽勇, 赵亚楠, 等, 2019.1961-2010年青藏高原气候变化特征分析[J].高原气象, 38(5): 911-919.DOI: 10.7522/j.issn.1000-0534.2018.00137.
[79]许显花, 李延林, 刘义花, 等, 2016.黄南南部近56年积雪变化分析研究[J].高原山地气象研究, 36(4): 65-70.
[80]杨佳星, 樊雨鑫, 2019.52年来三江源区气候变化及其环境效应分析[J].青海环境, 29(4): 169-175.
[81]姚闯, 吕世华, 王婷, 等, 2019.黄河源区多、 少雪年土壤冻融特征分析[J].高原气象, 38(3): 474-483.DOI: 10.7522/j.issn. 1000-0534.2018.00142.
[82]姚檀栋, 刘晓东, 王宁练, 2000.青藏高原地区的气候变化幅度问题[J].科学通报, 24(1): 98-106.
[83]游庆龙, 康世昌, 李潮流, 等, 2008.三江源地区1961~2005年气温极端事件变化[J].长江流域资源与环境, 17(2): 232-236.
[84]张井勇, 董文杰, 叶笃正, 等, 2003.中国植被覆盖对夏季气候影响的新证据[J].科学通报, 48(1): 91-95.
[85]张人禾, 苏凤阁, 江志红, 等, 2015.青藏高原21世纪气候和环境变化预估研究进展[J].科学通报, 60(32): 3036-3047.
[86]张森琦, 王永贵, 朱桦, 等, 2003.黄河源区水环境变化及其生态环境地质效应[J].水文地质工程地质, 30(3): 11-14.
[87]张森琦, 王永贵, 赵永真, 等, 2004.黄河源区多年冻土退化及其环境反映[J].冰川冻土, 26(1): 1-6.
[88]张永勇, 张士锋, 翟晓燕, 等, 2012.三江源区径流演变及其对气候变化的响应(英文)[J].Journal of Geographical Sciences, 22(5): 781-794.
[89]张颖, 章超斌, 王钊齐, 等, 2017.三江源1982-2012年草地植被覆盖度动态及其对气候变化的响应[J].草业科学, 34 (10): 1977-1990.
[90]郑子彦, 吕美霞, 马柱国, 2020.黄河源区气候水文和植被覆盖变化及面临问题的对策建议[J].中国科学院院刊, 35(1): 61-72.
[91]朱文会, 毛飞, 徐影, 等, 2019.三江源区植被指数对气候变化的响应及预测分析[J].高原气象, 38(4): 693-704.DOI: 10.7522/j.issn.1000-0534.2018.00105.
[92]朱永楠, 林朝晖, 郝振纯, 2015.珠江流域大尺度陆面水文耦合模式的构建及应用[J].水文, 35(1): 14-19.