积雪是导致目前全球水资源收支平衡中最大误差的原因之一, 雪深的上升与下降过程将改变地气之间的相互作用。本文基于三江源腹地甘德地区积雪野外观测试验站, 利用每30 min频次2、 4、 8和16 m四个高度的空气温湿度、 2 m高度的辐射数据及雪面温度, 结合同步雪深观测数据, 分析了2018年1 -5月间两次较大积雪过程中雪深上升、 下降时期近地层的温湿度垂直变化特征。结果表明, 在雪深上升时期, 2月过程先出现了逆湿而后出现了逆温现象, 而在4月过程中无逆温及逆湿现象出现; 雪深快速增加时段, 两次过程在4 m高度均出现暖湿现象。雪深下降时期, 两次过程均出现了逆温、 逆湿现象, 出现时间及消退时间不一致且先出现了逆湿后出现逆温现象; 两次过程在雪深上升过程中白天及夜间均出现了4 m偏暖现象, 在雪深下降过程中仅有白天出现了4 m偏暖现象; 在雪深下降时期, 雪面温度对短波辐射较气温更为敏感, 不同深度的雪深与辐射的相关性存在差异; 2月, 雪深下降的影响因子顺序为雪面温度>短波辐射>气温, 而4月为气温>雪面温度>短波辐射。
Snow is one of the biggest errors in the balance of water resources in the world.The rising and falling process of snow depth will change the interaction between the ground and the atmosphere.In this paper, based on the snow field observation station in Gande area in the hinterland of Sanjiangyuan, and using the air temperature and humidity at 2, 4, 8 and 16 m every 30-min, the radiation data at 2 m and the snow surface temperature, combined with the synchronous snow depth observation data, we analyzed the vertical variation characteristics of temperature and humidity in the near-surface layer during the two heavy snow cover processes from January to May 2018.The results show that: (1) In the period of rising snow depth, the phenomenon of inverse humidity appeared first and then inverse temperature appeared in February, but there was no phenomenon of inverse temperature and inverse humidity in April.During the period of rapid increase of snow depth, warm and wet phenomena appeared at the height of 4m in both processes.(2) During the period of falling snow depth, the phenomena of temperature inversion and humidity inversion appeared in both processes, and the occurrence time and fading time were inconsistent, and the phenomenon of temperature inversion first appeared after humidity inversion.During the two processes, the phenomenon of 4 m warmer appeared during the day and night when the snow depth increased, but only during the day when the snow depth decreased.(3) In the period of falling snow depth, the snow surface temperature is more sensitive to short-wave radiation than air temperature, and the correlation between snow depth and radiation is different at different depths.In February, the order of influencing factors of snow depth decline was snow surface temperature>short wave radiation>air temperature, while in April, the order was air temperature>snow surface temperature>short wave radiation.
[1]Brazenec W A, 2005.Evaluation of ultrasonic snow depth sensors for automated surface observing systems(ASOS).Colorad-O: Colorado State University.
[2]Brown R D, Mote P W, 2009.The response of Northern Hemisphere snow cover to a changing climate[J].Journal of Climate.22(8): 2124-2145.DOI: 10.1175/2008JCLI2665.1.
[3]Budyko M I, 1969.The effects of solar radiation on the climate of the earth[J].Tellus, 21: 611-619.DOI: 10.3402/tellusa.v21i5. 10109.
[4]Choudhury B, 1982.Spectral albedos of mid-latitude snowpacks[J].Cold Regions Science and Technology, 6(2): 123-139.DOI: 10.1016/0165-232x(82)90005-2.
[5]Picard G, Domine F, Krinner G, et al, 2012.Inhibition of the positive snow-albedo feedback by precipitation in interior Antarctica[J].Nature Climate Change, 2: 795-798.DOI: 10.1038/nclimate1590.
[6]Pirazzini R, Lepp?nen L, Picard G, et al, 2018.European in-situ snow measurements: Practices and purposes[J].Sensors, 18(7), 2016.DOI: 10.3390/s18072016.
[7]Qian Y F, Zheng Y Q, Zhang Y, et al, 2003.Responses of China's summer monsoon climate to snow anomaly over the Tibetan Plateau[J].International Journal of Climatology, 23(6): 593-613.
[8]Ryan W A, Doesken N J, Fassnacht S R, 2008.Evaluation of Ultra ,Sonic Snow Depth Sensors for Us Snow Measurements[J].Journal of Atmospheric and Oceanic Technology, 25(5): 667-684.
[9]Witze A, 2016.Snow sensors seek best way to track the white stuff[J].Nature, 532, 17.DOI: 10.1038/532017a.
[10]Yang F, Kumar A, Wang W, et al, 2001.Snow ,albedo feedback and seasonal climate variability over North America[J], Journal of Climate, 14(22): 4245-4248.DOI: 10.1175/1520-0442(2001)014<4245: safasc>2.0.co; 2.
[11]除多, 边巴次仁, 扎珠, 等, 2018.SR-50A超声雪深仪在西藏高原的适用性研究[J].高原气象, 37(2): 382-393.DOI: 10. 7522/j.issn.1000-0534.2018.00037.
[12]冯学智, 肖鹏峰, 张学良, 等, 2018.天山中部积雪遥感与应用[M].北京: 科学出版社, 4-5.
[13]郭建平, 刘欢, 安林昌, 等, 2016.2001-2012年青藏高原积雪覆盖率变化及地形影响[J].高原气象, 35(1): 24-33.DOI: 10. 7522/j.issn.1000-0534.2014.00140.
[14]郭玲鹏, 李兰海, 徐俊荣, 等, 2012.气温变化条件下融雪速率和土壤水分变化的同步观测试验[J].干旱区研究, 29(5): 890-897.
[15]黄芳芳, 马伟强, 李茂善, 等, 2016.藏北高原地表温度对气候变化响应的初步分析[J].高原气象, 35(1): 55-63.DOI: 10.7522/j.issn.1000-0534.2015.00075.
[16]胡汝骥, 2013.中国积雪与雪灾防治[M].北京: 中国环境出版社, 16-17.
[17]姜琪, 罗斯琼, 文小航, 等, 2020.1961-2014年青藏高原积雪时空特征及其影响因子[J].高原气象, 39(1): 24-36.DOI: 10. 7522/j.issn.1000-0534.2019.00022.
[18]李丹华, 文莉娟, 隆霄, 等, 2017.积雪对玛曲局地微气象特征影响的观测研究[J].高原气象, 36(2): 330-339.DOI: 10.7522/j.issn.1000-0534.2016.00074.
[19]李栋梁, 王春学, 2011.积雪分布及其对中国气候影响的研究进展[J].大气科学学报, 34(5): 627-636.
[20]刘晓娇, 陈仁升, 刘俊峰, 等, 2020.黄河源区积雪变化特征及其对春季径流的影响[J].高原气象, 39(2): 226-233.DOI: 10. 7522/j.issn.1000-0534.2019.00074.
[21]李英, 李跃清, 赵兴炳, 2009.青藏高原东坡理塘地区近地层湍流通量与微气象特征研究[J].气象学报, 67(3): 417-425.
[22]彭艳, 张宏升, 刘辉志, 等, 2005.青藏高原近地面层气象要素变化特征[J].北京大学学报(自然科学版), 41(2): 180-190.
[23]沈永平, 苏宏超, 王 国亚, 等, 2013a.新疆冰川、 积雪对气候变化的响应(I): 水文效应[J].冰川冻土, 35(3): 513-527.
[24]沈永平, 苏宏超, 王国亚, 等, 2013b.新疆冰川、 积雪对气候变化的响应(II): 灾害效应[J].冰川冻土, 35(6): 1355-1370.
[25]王婷, 李照国, 吕氏华, 等, 2019.青藏高原积雪对陆面过程热量输送的影响研究[J].高原气象, 38(5): 920-934.DOI: 10. 7522/j.issn.1000-0534.2019.00026.
[26]肖林, 车涛, 2015.青藏高原积雪对气候反馈的初步研究[J].遥感技术与应用, 30(6): 1066-1075.DOI: 10.11873/j.issn.1004-0323.2015.6.1066.
[27]徐兴奎, 2011.1970-2000年中国降雪量变化和区域性分布特征[J].冰川冻土, 33(3): 497-503.
[28]许立言, 武炳义, 2012.欧亚大陆积雪与2010年中国春末夏初降水的关系[J].高原气象, 31(3): 706-714.
[29]杨志刚, 达娃, 除多, 2017.近15A青藏高原积雪覆盖时空变化分析[J].遥感技术与应用, 32(1): 27-36.DOI: 10.11873/j.issn. 1004-0323.2017.1.0027.
[30]张娟, 徐维新, 王力, 等, 2018.三江源腹地玉树地区动态融雪过程及其与气温关系分析[J].高原气象, 37(4): 936-945.DOI: 10.7522/j.issn.1000-0534.2018.00001.
[31]张强, 孙昭萱, 王胜, 2011.黄土高原定西地区陆面物理量变化规律研究[J].地球物理学报, 54(7): 1727-1737.DOI: 10.3969/j.issn.0001-5733.2011.04.005.
[32]赵兴炳, 彭斌, 秦宁生, 等, 2011.青藏高原不同地区夏季近地层能量输送与微气象特征比较分析[J].高原山地气象研究, 31(1): 6-11.DOI: 10.3969/j.issn.1674-2184.2011.01.002.
[33]周扬, 徐维新, 张娟, 等, 2017a.2013-2015年青藏高原玛多地区两次动态融雪过程及其与气温关系对比分析[J].自然资源学报, 32(1): 101-113.DOI: 10.11849/zrzyxb.20160121.
[34]周扬, 徐维新, 白爱娟, 等, 2017b.青藏高原沱沱河地区动态融雪过程及其与气温关系分析[J].高原气象, 36(1): 24-32.DOI: 10.7522/j.issn.1000-0534.2016.00013.
[35]左洪超, 吕世华, 胡隐樵, 等, 2004.非均匀下垫面大气边界层的观测和数值模拟研究(I): 冷岛效应和逆湿现象的完整物理图像[J].高原气象, 23(2): 155-162.