湖气温差是影响无冰期湖泊和大气界面热量交换的重要因素, 但由于青藏高原野外观测试验开展不易, 目前青藏高原湖泊湖气温差特征的研究仍然存在不足, 同时对青藏高原湖泊湖表辐射和能量收支的研究也较少。本文利用中国区域高时空地面气象要素驱动数据集(简称ITPCAS)驱动公用陆面模式中的湖模块(简称CLM-Lake), 对由浅至深的鄂陵湖、 班公错、 纳木错三个较大、 较深青藏高原湖泊无冰期湖气温差及湖表辐射能量平衡特征进行了研究。MODIS湖表温度数据、 气象站观测数据对模拟结果进行验证表明, CLM-Lake能较好地模拟出高原湖泊湖表温度的年内变化。由于高原地区高海拔导致的低气温和强太阳辐射影响, 深度分别为23 m和95 m的鄂陵湖和纳木错湖在无冰期湖气温差始终为正, 且从春末夏初至秋末冬初持续增大; 现有观测资料和模拟结果表明, 深度为37 m的班公错在6 -7月出现了负的湖气温差, 这可能是因为班公错湖区在6 -7月更暖更干, 加强了湖泊的蒸发, 使湖泊吸收的净辐射更多转化为潜热释放, 造成湖表面增温减弱且慢于气温, 出现负湖气温差。这一现象与高原其他湖泊在无冰期湖气温差一般为正的情况有所不同, 但由于所用班公错观测资料为5 m深处的湖水温度和距离湖畔10 km的陆面气温, 因此还需要更为准确的观测进一步验证。模拟的三个湖泊感热通量变化趋势与湖泊湖气温差变化趋势相似, 模拟的潜热通量全年均为正值。
Lake-atmosphere temperature difference (?T) plays an important role in the heat exchange between lake surface and overlying atmosphere during the ice-free period.However, due to the difficulty of carrying out field observation experiments on the Qinghai-Xizang Plateau (QXP), the characteristics of the ?T remains poorly understood.And also, there are few studies on the radiation and energy budget of the alpine lakes at present.In this study, the characteristics of ?T, radiation and energy balance at three larger and deeper alpine lakes with different depths (Ngoring, Bangong Co and Nam Co) were studied by using the China Meteorological Forcing Dataset (ITPCAS) and the one-dimensional lake module of the Community Land Model(CLM-Lake).Verification of model results achieved with remote sensing data and observed data from meteorological station indicate that the lake model has a good ability in simulating the seasonal variations of the lake surface temperature on the QXP.As a result of the lower temperature and the stronger solar radiation caused by high altitude on the QXP, the ?T of Ngoring (23 m deep) and Nam Co (95 m deep) were always positive during the ice-free period and continued to increase from the late spring or early summer to the late autumn or early winter.Available observations and the simulations in our study showed that the Bangong Co lake, with a depth of 37 m, has a negative ?T in June and July, which may ascribed to a warmer and drier air in Bangong Co lake region in June and July, lead to a stronger evaporation over the lake surface, and more energy of the lake was released in the form of latent heat.As a result, the warming of the lake surface was weakened and slower than air temperature, eventually a negative ?T formed.This phenomenon is different from other lakes in QXP during the ice-free period where the ?T is generally positive.However, it should be noted that the observed lake water temperature at Bangong Co is 5 m below the lake surface and air temperature is over the land surface 10 km away from the lake, so more accurate data is needed for the further verification.The trend of the simulated sensible heat flux over surface of the three lakes was similar to that of ?T, and the simulated latent heat flux was positive all year round meaning that the lake was constantly sending water vapor to the atmosphere.
[1]Atkinson D, 1994.Temperature and organism size: A biological law for ectotherms[J] Advances in Ecological Research, 25(6): 1-58.
[2]Blanken P D, Spence C, Hedstrom N, et al, 2011.Evaporation from Lake Superior: 1.Physical controls and processes[J].Journal of Great Lakes Research, 37(4): 707-716.
[3]Chen Y Y, Yang K, He J, et al, 2011.Improving land surface temperature modeling for dry land of China[J].Journal of Geophysical Research: Atmospheres, 116: D20104.DOI: 10.1029/2011JD015921.
[4]Crosman E T, Horel J D, 2009.MODIS-derived surface temperature of the Great Salt Lake[J].Remote Sensing of Environment, 113(1): 73-81.
[5]Du Q, Liu H Z, Xu L J, et al, 2018.The monsoon effect on energy and carbon exchange processes over a highland lake in the southwest of China[J].Atmospheric Chemistry and Physics, 18: 15087-15104.
[6]Dutra E, Stepanenko V, Balsamo G, et al, 2010.An offline study of the impact of lakes on the performance of the ECMWF surface scheme[J].Boreal Environment Research, 15(2): 100-112.
[7]Franz D, Mammarella I, Boike J, et al, 2018.Lake-atmosphere heat flux dynamics of a Thermokarst Lake in Arctic Siberia[J].Journal of Geophysical Research: Atmospheres, 123: 5222-5239.DOI: 10.1029/ 2017JD027751.
[8]Henderson-Sellers B, 1985.New formulation of eddy diffusion thermocline models[J].Applied Mathematical Modelling, 9(6): 441-446.
[9]Henderson-Sellers B, 1986.Calculating the surface energy balance foe lake and reservoir modeling: A review[J].Reviews of Geophysics, 24(3): 625-649.
[10]Hostetler S W, Bartlein P J, 1990.Simulation of lake evaporation with application to modeling lake level variation of Harney-Malheur Lake, Oregon[J].Water Resource Research, 26(10): 2603-2613.
[11]Hostetler S W, Bates G T, Giorgi F, 1993.Interactive coupling of a lake thermal model with a regional climate model[J].Journal of Geophysical Research, 98(D3): 5045-5057.
[12]Hostetler S W, Giorgi F, Bates G T, 1994.Lake-atmosphere feedbacks associated with Paleolakes Bonneville and Lahontan[J].Science, 263(5417): 665.
[13]Huang L, Wang J B, Zhu L P, et al, 2017.The warming of large lakes on the Tibetan Plateau: Evidence from a lake model simulation of Nam Co, China, during 1979-2012[J].Journal of Geophysical Research: Atmospheres, 122(24): 13095-13107.DOI: 10.1002/2017JD027379.
[14]Kar D, 2013.Wetlands and Lakes of the World[M].India: Springer, 142.DOI: 10.1007/978-81-322-1023-8.
[15]Khan A, Richards K S, Parker G T, et al, 2014.How large is the Upper Indus Basin? The pitfalls of auto-delineation using DEMs[J].Journal of Hydrology, 509: 442-453.
[16]La Z, Yang K, Wang J B, et al, 2016.Quantifying evaporation and its decadal change for Lake Nam Co, central Tibetan Plateau[J].Journal of Geophysical Research: Atmospheres, 121: 7578-7591.DOI: 10.1002/2015JD024523.
[17]Lei Y B, Yao T D, Bird B W, et al, 2013.Coherent lake growth on the central Tibetan Plateau since the 1970s: Characterization and attribution[J].Journal of Hydrology, 483: 61-67.
[18]Li X Y, Ma J M, Huang Y M, et al, 2016.Evaporation and surface energy budget over the largest high-altitude saline lake on the Qinghai-Tibet Plateau[J].Journal of Geophysical Research: Atmospheres, 121: 10470-10485.DOI: 10.1002/2016JD025027.
[19]Liu H P, Zhang Y, Liu S H, et al, 2009.Eddy covariance measurements of surface energy budget and evaporation in a cool season over southern open water in Mississippi.Journal of Geophysical Research: Atmospheres, 114: D04110.DOI: 10.1029/2008JD010891.
[20]Liu J G, Xie Z H, 2013.Improving simulation of soil moisture in China using a multiple meteorological forcing ensemble approach[J].Hydrology and Earth System Science, 17: 3355-3369.DOI: 10.5194/hess-17-3355-2013.
[21]Livingstone D M, André F L, Ian R W, 1999.The decrease in summer surface water temperature with altitude in Swiss alpine lakes: A comparison with air temperature lapse rates[J].Arctic, Antarctic, and Alpine Research, 31(4): 341-352.
[22]Long Z, Perrie W, Gyakum J, et al, 2007.Northern Lake Impacts on Local Seasonal Climate[J].Journal of Hydrometeorology, 8(4): 881-896.
[23]Oswald C J, Rouse W R, 2004.Thermal characteristics and energy balance of various-size Canadian Shield lakes in the Mackenzie River basin[J].Journal of Hydrometeorology, 5(1): 129-144.
[24]Oleson K W, Lawrence D M., Bonan G B, et al, 2013.Technical Description of Version 4.5 of the Community Land Model[M].Boulder, Colorado: NCAR Earth System Laboratory, National Center for Atmospheric Research.
[25]Piccolroaz S, Toffolon M, Majone B, 2015.The role of stratification on lakes’ thermal response: The case of Lake Superior[J].Water Resources Research, 51(10): 7878-7894.
[26]Rouse W R, Blanken P D, Bussières N, et al, 2008.An investigation of the thermal and energy balance regimes of Great Slave and Great Bear Lakes[J].Journal of Hydrometeorology, 9(6): 1318-1333.
[27]Rouse W R, Oswald C J, Binyamin J, et al, 2005.The role of northern lakes in a regional energy balance[J].Journal of Hydrometeorology, 6(3): 291-305.
[28]Rouse W R, Oswald C M, Binyamin J, et al, 2003.Interannual and Seasonal Variability of the Surface Energy Balance and Temperature of Central Great Slave Lake[J].Journal of Hydrometeorology, 4(2003): 720-730.
[29]Rueda F, Moreno-Ostos E, Cruz-Pizarro L, 2007.Spatial and temporal scales of transport during the cooling phase of the ice-free period in a small high-mountain lake[J].Aquatic Sciences, 69(1): 115-128.
[30]Samuelsson P, Tjernstr?m M, 2001.Mesoscale flow modification induced by land-lake surface temperature and roughness differences[J].Journal of Geophysical Research, 106(D12): 12419.
[31]Subin Z M, Riley W J, Mironov D V, 2012.An improved lake model for climate simulations: Model structure, evaluation, and sensitivity analyses in CESM1[J].Journal of Advances in Modeling Earth Systems, 4: M02001.DOI: 10.1029/2011MS000072.
[32]Verburg P, Antenucci J P, 2010.Persistent unstable atmospheric boundary layer enhances sensible and latent heat loss in a tropical great lake: Lake Tanganyika[J].Geophysical Research Atmosphere, 118(11): 5347-5347.DOI: 10.1029/2009JD012839.
[33]Verpoorter C, Kutser T, Seekell D A, et al, 2015.A global inventory of lakes based on high‐resolution satellite imagery[J].Geophysical Research Letters, 41(18): 6396-6402.DOI: 10.1002/2014GL060641.
[34]Wan Z, Zhang Y, Zhang Q, et al, 2004.Quality assessment and validation of the MODIS global land surface temperature[J].International Journal Remote Sensing, 25(1): 261-274.
[35]Wang B B, Ma Y M, Chen X L, et al, 2015.Observation and simulation of lake-air heat and water transfer processes in a high-altitude shallow lake on the Tibetan Plateau[J].Journal of Geophysical Research: Atmospheres, 120(24): 12327-12344.DOI: 10.1002/ 2015JD023863.
[36]Wang W, Xiao W, Cao C, et al, 2014.Temporal and spatial variations in radiation and energy balance across a large freshwater lake in China[J].Journal of Hydrology, 511: 811-824.
[37]Wen L J, Lyu S H, Kirillin G, et al, 2016.Air-lake boundary layer and performance of a simple lake parameterization scheme over the Tibetan highlands[J].Tellus A: Dynamic Meteorology and Oceanography, 68(1): 31091.
[38]Woolway R I, Jones I D, Hamilton D P, et al, 2015.Automated calculation of surface energy fluxes with high-frequency lake buoy data[J].Environmental Modelling and Software, 70: 191-198.
[39]Woolway R I, Verburg P, Merchant C J, et al, 2017.Latitude and lake size are important predictors of over-lake atmospheric stability[J].Geophysical Research Letters, 44: 8875-8883.DOI: 10.1002/2017GL073941.
[40]Yang K, He Jie, Tang W J, et al, 2010.On downward shortwave and longwave radiations over high altitude regions: Observation and modeling in the Tibetan Plateau[J].Agricultural and Forest Meteorology, 150: 38-46.
[41]Yvon-Durocher G, Caffrey J M, Cescatti A, et al, 2012.Reconciling the temperature dependence of respiration across timescales and ecosystem types[J].Nature, 487(7408): 472-476.
[42]Zeng X B, Shaikh M, Dai Y J, et al, 2002.Coupling of the common land model to the NCAR community climate model[J].Journal of Climate, 15(14): 1832-1854.
[43]杜娟, 文莉娟, 苏东生, 2019.三套再分析资料在青藏高原湖泊模拟研究中的适用性分析[J].高原气象, 38(1): 104-116.DOI: 10.7522/j.issn.1000-0534.2018.00110.
[44]方楠, 阳坤, 拉珠, 等, 2017.WRF湖泊模型对青藏高原纳木错湖的适用性研究[J].高原气象, 36(3): 610-618.DOI: 10.7522/j.issn.1000-0534.2016.00038.
[45]古红萍, 沈学顺, 金继明, 等, 2013.一维热扩散湖模式在太湖的应用研究[J].气象学报, 71(4): 719-730.DOI: 10.11676/qxxb2013.051.
[46]何杰, 阳坤, 2011.中国区域高时空分辨率地面气象要素驱动数据集[DS/OL].寒区旱区科学数据中心.[2019-11-02].DOI: 10. 3972/westdc.002.2014.db.
[47]刘辉志, 冯建武, 孙绩华, 等, 2014.洱海湖气界面水汽和二氧化碳通量交换特征[J].中国科学(地球科学), 44: 2527-2539.DOI: 10.1007/s11430-014-4828-1.
[48]苏东生, 文莉娟, 赵林, 等, 2019.青海湖夏秋季局地气候效应数值模拟研究[J].高原气象, 38(5): 944-958.DOI: 10.7522/j.issn.1000-0534.2018.00125.
[49]苏东生, 胡秀清, 文莉娟, 等, 2018.青海湖热力状况对气候变化响应的数值研究[J].高原气象, 37(2): 394-405.DOI: 10.7522/j.issn.1000-0534.2017.00069.
[50]万玮, 肖鹏峰, 冯学智, 等, 2014.卫星遥感监测近30年来青藏高原湖泊变化[J].科学通报, 59(8): 701-714.DOI: 10.1007/s11434-014-0128-6.
[51]王苏民, 窦鸿身, 1998.中国湖泊志[M].北京: 科学出版社, 398-476.
[52]王明达, 侯居峙, 类延斌, 2014.青藏高原不同类型湖泊温度季节性变化及其分类[J].科学通报, 59(31): 3095-3103.DOI 10.1007/s11434-014-0588-8.
[53]肖宇, 谢淑云, 王明达, 等, 2015.青藏高原班公错与达则错水温时间序列分形特征[J].地质科技情报, 34(6): 200-206.
[54]杨显玉, 文军, 2012.扎陵湖和鄂陵湖大气边界层特征的数值模拟[J].高原气象, 31(4): 927-934.