论文

砾石参数化对青藏高原陆面过程模拟的影响及敏感性分析

  • 马翠丽 ,
  • 吕世华 ,
  • 潘永洁 ,
  • 方雪薇 ,
  • 李照国 ,
  • 王婷
展开
  • <sup>1.</sup>成都信息工程大学大气科学学院,四川 成都 610225;<sup>2.</sup>内蒙古包头市气象局,内蒙古 包头 014030;<sup>3.</sup>南京信息工程大学气象灾害预报预警与评估协同创新中心,江苏 南京 210044;<sup>4.</sup>中国科学院西北生态环境资源研究院/寒旱区陆面过程与气候变化重点实验室,甘肃 兰州 730000;<sup>5.</sup>四川省气象灾害防御技术中心,四川 成都 610072

收稿日期: 2019-10-22

  网络出版日期: 2020-12-28

基金资助

第二次青藏高原综合科学考察研究项目(2019QZKK0103);国家自然科学基金项目(41975007)

Impact and Sensitivity Analysis of Gravel Parameterization on Simulation of Land Surface Processes on the Qinghai-Xizang Plateau

  • Cuili MA ,
  • Shihua Lü ,
  • Yongjie PAN ,
  • Xuewei FANG ,
  • ZhaoGuo LI ,
  • Ting WANG
Expand
  • <sup>1.</sup>Chengdu University of Information Technology,Chengdu 610225,Sichuan,China;<sup>2.</sup>Baotou Meteorological Bureau,Baotou 014030,Inner-Mongolia,China;<sup>3.</sup>Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters,Nanjing University of Information Science and Technology,Nanjing 210044,Jiang su,China;<sup>4.</sup>Key Laboratory of Land Surface Process & Climate Change in Cold and AridRegions,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,Gansu,China;<sup>5.</sup>Sichuan Meteorological Disaster Prevention Technology Center,Chengdu 610072,Sichuan,China

Received date: 2019-10-22

  Online published: 2020-12-28

摘要

将砾石参数化方案加入陆面模式CLM4.5中, 验证了新方案在模式中的适用性且土壤温湿度模拟效果优于原方案, 有效提升了深层土壤温度峰值和土壤含水量谷值的模拟。利用新方案研究土壤中不同砾石含量对陆面过程的影响分析发现: 土壤导热率随砾石含量增多而增大, 使深层土壤夏季(冬季)吸热(放热)增强, 模拟值升高(降低)。土壤含水量大(小)的时候土壤导水率随砾石含量增多而增大(减小), 造成土壤含水量模拟值减小(增大)。同时砾石的增多减小了冬季深层土壤温度的模拟值, 使深层更多的水变成了冰, 进一步减小了土壤导水率, 造成深层土壤含水量模拟值的减小。砾石改变了土壤水热过程, 进而影响了地表辐射通量和能量通量的变化, 各月份砾石含量的不同对其贡献均有所不同, 总贡献表现为随砾石含量的增多, 土壤净辐射减小。

本文引用格式

马翠丽 , 吕世华 , 潘永洁 , 方雪薇 , 李照国 , 王婷 . 砾石参数化对青藏高原陆面过程模拟的影响及敏感性分析[J]. 高原气象, 2020 , 39(6) : 1219 -1231 . DOI: 10.7522/j.issn.1000-0534.2020.00005

Abstract

The gravel parameterization scheme is added to the land surface model CLM4.5, which verifies the applicability of the new scheme in the model and the simulation effect of soil temperature and humidity is better than the original scheme.The simulation of the peak soil temperature and the valley value of soil water content is effectively improved.The new scheme was used to study the effect of different gravel content on the land surface process.The analysis found that the soil thermal conductivity increases with the increase of gravel content, which increases the endothermic (exothermic) heat of the deep soil in summer (winter) and increases (reduces) the simulated value.When the soil water content is large (small), the soil hydraulic conductivity increases (decreases) with the increase of the gravel content, which causes the simulated value of the soil water content to decrease (increased).At the same time, the increase of gravel reduces the simulation of deep soil temperature in winter, making more water in the deep layer become ice, further reducing the soil hydraulic conductivity, and causing the simulation of deep soil water content to decrease.Gravel changes the soil hydrothermal process, which affects the surface radiation flux and energy flux.The contribution of different gravel contents in each month was different, and the total contribution showed that the net soil radiation decreased with the increase of gravel content.

参考文献

[1]Arocena J, Hall K, Zhu L P, 2012.Soil formation in high elevation and permafrost areas in the Qinghai Plateau (China)[J].Spanish Journal of Soil Science, 2(2): 34-49.
[2]Chen Y Y, Yang K, Tang W J, et al, 2012.Parameterizing soil organic carbon’s impacts on soil porosity and thermal parameters for Eastern Tibet grasslands[J].Science China (Earth Sciences), 55(6): 1001-1011.
[3]Clapp R B, Hornberger G M, 1978.Empirical equations for some soil hydraulic properties[J].Water Resources Research, 14(4): 601-604.
[4]Cosby B J, Hornberger G M, Clapp R B, et al, 1984.A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils[J].Water Resources Research, 20(6): 682-690.
[5]Coile T S, 1953.Moisture content of small stone in soils[J].Soil Science.75(3): 203-207.
[6]C?té J, Konrad J M, 2005.A generalized thermal conductivity model for soils and construction materials[J].Canadian Geotechnical Journal, 42(2): 443-458.
[7]Cousin I, Nicoullaud B, Coutadeur C, 2003.Influence of rock fragments on the water retention and water percolation in a calcareous soil[J].Catena, 53(2): 97-114.
[8]Epstein E, Grant W J, Struchtemeyer R A, 1966.Effects of stones on runoff, erosion, and soil moisture[J].Soil Science Society of America, 30(5): 638-640.
[9]Farouki O T, 1981.The thermal properties of soils in cold regions[J].Cold Regions Science and Technology, 5(1): 67-75.
[10]Groenevelt P H, van Straaten P, Rasiah V, et al, 1989.Modifications in evaporation parameters by rock mulches[J].Soil Technology, 2(3): 279-285.
[11]Kosmas C S, Danalatos N G, 1993.The impacts of parent material and landdscape position on drought and biomass production of wheat and ersemiarid conditions[J].Soil Technology, 6(4): 337-349.
[12]Li X Y, 2002.Effects of gravel and sand mulches on dew deposition in the semiarid region of China[J].Journal of Hydrology, 260(1/4): 151-160.
[13]Mehuys G R, Stolzy L H, Letey J, et al, 1975.Effect of stones on the hydraulic conductivity of relatively dry desert soils1[J].Soil Science Society of America Journal, 39(1): 37-42.
[14]Ohtsuka T, Hirota M, Zhang X, et al, 2008.Soil organic carbon pools in alpine to nival zones along an altitudinal gradient (4400-5300 m) on the Tibetan Plateau[J].Polar Science, 2(4): 277-285.
[15]Pan Y J, Lyu S H, Li S S, et al, 2015.Simulating the role of gravel in freeze-thaw process on the Qinghai-Tibet Plateau[J].Theoretical and Applied Climatology, 127(3/4): 1011-1022.DOI: 10.1007/s00704-015-1684-7.
[16]Peck A J, Watson J D, 1979.Hydraulic conductivity and flow in non-uniform soil[C]//Workshop on soil physics and field heterogeneity.CSIRO Division of Environmental Mechanics, Canberra, Australia.
[17]Poesen J, Lavee H, 1994.Rock fragments in top soils: Significance and processes[J].Catena, 23(1/2): 1-28.
[18]Russo D, 1983.Leaching characteristics of a stony desert soil[J].Soil Science Society of America Journal, 47(3): 431-438.
[19]何玉洁, 宜树华, 郭新磊, 2017.青藏高原含砂砾石土壤导热率实验研究[J].冰川冻土, 39(2): 343-350.
[20]栾澜, 孟宪红, 吕世华, 等, 2018.青藏高原土壤湿度触发午后对流降水模拟试验研究[J].高原气象, 37(4): 873-885. DOI: 10. 7522/j.issn.1000-0534.2018.00008.
[21]马东豪, 2008.黄土区土石混合介质水分运动实验研究及数值模拟[D].北京: 北京中国科学院地理科学与资源研究所.
[22]马英赛, 孟宪红, 韩博, 等, 2019.黄土高原土壤湿度对地表能量和大气边界层影响的观测研究[J].高原气象, 38(4): 705-715.DOI: 10.7522/j.issn.1000-0534.2019.00036.
[23]潘永洁, 高艳红, 2018.气温和降水变化对土壤呼吸影响的数值模拟[C]// 合肥: 第35届中国气象学会年会.
[24]潘永洁, 吕世华, 高艳红, 等, 2015.砾石对青藏高原土壤水热特性影响的数值模拟[J].高原气象, 34(5): 1224-1236.DOI: 10. 7522/j.issn.1000-0534.2014.00055.
[25]任敏, 2011.含砾石紫色土坡面砾石分异特点及入渗特性研究[D].武汉: 华中农业大学.
[26]王婷, 李照国, 吕世华, 等, 2019.青藏高原积雪对陆面过程热量输送的影响研究[J].高原气象, 38(5): 920-934.DOI: 10.7522/j.issn.1000-0534.2019.00026.
[27]解晋, 余晔, 刘川, 等, 2018.青藏高原地表感热通量变化特征及其对气候变化的响应[J].高原气象, 37(1): 28-42.DOI: 10. 7522/j.issn.1000-0534.2017.00019.
[28]杨艳芬, 王全九, 曾辰, 等, 2010.土石混合介质入渗模型及其参数影响因素研究[J].干旱地区农业研究, 28(1): 6-10, 26.
[29]周蓓蓓, 2009.土石混合介质水分溶质运移的试验研究[D].杨凌: 西北农林科技大学.
文章导航

/