考虑砾石(砾径大于2 mm)对陆面过程的作用, 利用青藏高原玛多站实测资料检验陆面模式砾石参数化方案对BCC_AVIM陆面过程模式土壤水热模拟的影响。结果发现, 砾石改变了土壤质地的组成, 造成土壤中水热基本参数的变化, 从而影响土壤导水率和土壤导热率, 最终影响土壤温湿度的模拟。利用玛多站实测数据, 对比新旧方案, 发现新方案减小了土壤温度和土壤含水量的模拟值, 减小了模拟结果的绝对偏差和均方根误差, 增大了土壤温湿度模拟的相关系数, 改善了原模式土壤水热模拟性能, 尤其是深层土壤含水量的模拟效果提升明显。同时, 新方案减小了浅层土壤含冰量的模拟, 增加了深层土壤含冰量的模拟, 增大了积雪覆盖率和积雪深度的模拟。
Considering the effect of gravel(particle size≥2 mm)on the land surface process, using the measured data of the Maduo site on the Qinghai-Tibetan Plateau (QTP) to test the influence of the surface model gravel parameterization scheme on thermal and hydrological processes in soil containing gravel.The new scheme was implemented in the BCC_AVIM land surface process model of the National Climate Center.The results show that the gravel changes the composition of the soil texture, resulting the changes in the basic parameters of soil thermal and soil hydrological.So the soil hydraulic conductivity and soil thermal conductivity are affected.In the end, the simulation of soil temperature and humidity changes.Using the measured data of Maduo station, comparing the original and new scheme, it is found that the new scheme reduces the simulated values of soil temperature and soil water content, reduces the absolute deviation and root mean square error of the simulation results, and increases the correlation between soil temperature and soil moisture simulation.The coefficient improves the performance of the original model soil thermal and hydrological simulation, especially the simulation effect of deep soil water content.At the same time, the new scheme reduces the simulation of ice content in shallow soils, increases the simulation of ice content in deep soils, and increases the simulation of snow cover and snow depth.
[1]Arocena J, Hall K, Zhu L P, 2012.Soil formation in high elevation and permafrost areas in the Qinghai Plateau (China)[J].Spanish Journal of Soil Science, 2(2): 34-49.
[2]Zhou B B, Shao M A, Shao H B, 2009.Effects of rock fragments on water movement and solute transport in a Loess Plateau soil[J].Comptes Rendus Geoscience, 341(6): 462-472.
[3]Chen Y Y, Yang K, Tang W J, et al, 2012.Parameterizing soil organic carbon’s impacts on soil porosity and thermal parametersfor Eastern Tibet grasslands[J].Science China (Earth Sciences), 55(6): 1001-1011.
[4]Childs S W, Flint A L, 1990.Physical properties of forest soils containing rock fragments[C]//Gessel S P, Lacate G F W, Power R F.Sustained Productivity of Forest Soils.Vancouver, B.C.: University of British Columbia, Faculty of Forestry Publ., 95-121.
[5]Clapp R B, Hornberger G M, 1978.Empirical equations for some soil hydraulic properties[J].Water Resources Research, 14(4): 601-604.
[6]Cosby B J, Hornberger G M, Clapp R B, et al, 1984.A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils[J].Water Resources Research, 20(6): 682-690.
[7]Cousin I, Nicoullaud B, Coutadeur C, 2003.Influence of rock fragments on the water retention and water percolation in a calcareous soil[J].Catena, 53(2): 97-114.
[8]C?té J, Konrad J M, 2005.A generalized thermal conductivity model for soils and construction materials[J].Canadian Geotechnical Journal, 42(2): 443-458.
[9]Farouki O T, 1981.The thermal properties of soils in cold regions[J].Cold Regions Science and Technology, 5(1): 67-75.
[10]Li X Y, 2002.Effects of gravel and sand mulches on dew deposition in the semiarid region of China[J].Journal of Hydrology, 260(1/4): 151-160.
[11]Mehuys G R, Stolzy L H, Letey J, et al, 1975.Effect of stones on the hydraulic conductivity of relatively dry desert soils1[J].Soil Science Society of America Journal, 39(1): 37-42.
[12]Ohtsuka T, Hirota M, Zhang X, et al, 2008.Soil organic carbon pools in alpine to nival zones along an altitudinal gradient (4400-5300 m) on the Tibetan Plateau[J].Polar Science, 2(4): 277-285.
[13]Pan Y J, Lü S H, Li S S, et al, 2015.Simulating the role of gravel in freeze-thaw process on the Qinghai-Tibet Plateau[J].Theoretical and Applied Climatology, 127(3/4): 1011-1022.DOI: 10. 1007/s00704-015-1684-7.
[14]Peck A J, Watson J D, 1979.Hydraulic conductivity and flow in non-uniform soil[C]//Workshop on soil physics and field heterogeneity.CSIRO Division of Environmental Mechanics, Canberra, Australia.
[15]Poesen J, Lavee H, 1994.Rock fragments in top soils: Significance and processes[J].Catena, 23(1/2): 1-28.
[16]Russo D, 1983.Leaching characteristics of a stony desert soil[J].Soil Science Society of America Journal, 47(3): 431-438.
[17]Wu X D, Zhao L, Fang H B, et al, 2012.Soil enzyme activities in permafrost regions of the western Qinghai-Tibetan Plateau[J].Soil Science Society of America Journal, 76(4): 1280-1289.
[18]Yi S, Chen J, Wu Q, 2013.Simulating the role of gravel on the dynamics of permafrost on the Qinghai-Tibetan Plateau[J].The Cryosphere Discuss, 7(5): 4703-4740.
[19]何玉洁, 宜树华, 郭新磊, 2017.青藏高原含砂砾石土壤导热率实验研究[J].冰川冻土, 39(2): 343-350.
[20]栾澜, 孟宪红, 吕世华, 等, 2018.青藏高原土壤湿度触发午后对流降水模拟试验研究[J].高原气象, 37(4): 873-885.DOI: 10. 7522/j.issn.1000-0534.2018.00008.
[21]罗斯琼, 吕世华, 张宇, 等, 2008.CoLM 模式对青藏高原中部 BJ站陆面过程的数值模拟[J].高原气象, 27(2): 262-271.
[22]马欣, 张堂堂, 陈金雷, 2019.黄土高原典型塬区土壤热性质变化特征研究[J].高原气象, 38(3): 507-517.DOI: 10.7522/j.issn.1000-0534.2018.00158.
[23]马英赛, 孟宪红, 韩博, 等, 2019.黄土高原土壤湿度对地表能量和大气边界层影响的观测研究[J].高原气象, 38(4): 705-715.DOI: 10.7522/j.issn.1000-0534.2019.00036.
[24]潘永洁, 吕世华, 高艳红, 等, 2015.砾石对青藏高原土壤水热特性影响的数值模拟[J].高原气象, 34(5): 1224-1236.DOI: 10. 7522/j.issn.1000-0534.2014.00055.
[25]吴统文, 宋连春, 李伟平, 等, 2014.北京气候中心气候系统模式研发进展——在气候变化研究中的应用[J].气象学报, 72(1): 12-29.