利用包含了砾石参数化方案的BCC_AVIM陆面过程模式, 并耦合到国家气候中心气候系统模式(BCC_CSM)对青藏高原区域进行了模拟效果检验。然后使用CRA-40土壤温湿度产品和地面气温、 降水的格点资料, 通过对比原方案和新方案对土壤温湿度、 地表气温和降水的模拟效果。结果表明, 新方案减小了青藏高原地区土壤温湿度的偏差、 均方根误差, 增大了相关系数, BCC_CSM中高原地区的地表气温的模拟值在加入砾石后更加符合观测, 尤其是夏季, 新方案地表气温与观测值的相关系数增大, 均方根误差减小。BCC_CSM中新方案在青藏高原地区降水的模拟效果也有所提升, 降低了原方案对于降水量的模拟峰值, 较原方案相比新方案趋势与观测更为接近。
Using the BCC_AVIM land surface process model including the gravel parameterization scheme, and coupled to the National Climate Center Climate System Model (BCC_CSM), the simulation effect of the Qinghai-Xizang Plateau region was tested.Then, using the CRA-40 soil temperature and humidity products and the grid data of surface temperature and precipitation, by comparing the simulation effects of the original scheme and the new scheme on soil temperature and humidity, surface temperature and precipitation, the results show that the new scheme reduces the Qinghai-Xizang Plateau area The deviation of soil temperature and humidity, the root mean square error, increase the correlation coefficient, the simulated value of surface temperature in the plateau area of BCC_CSM is more consistent with the observation after adding gravel, especially in summer, the correlation coefficient between the surface temperature of the new scheme and the observation value increases, and the root mean square error is reduced.The new program in BCC_CSM has also improved the precipitation simulation effect in the Qinghai-Xizang Plateau, reducing the simulated peak value of precipitation in the original program, which is closer to the observation than the original program.
[1]Arocena J, Hall K, Zhu L P, 2012.Soil formation in high elevation and permafrost areas in the Qinghai Plateau (China)[J].Spanish Journal of Soil Science, 2(2): 34-49.
[2]Childs S W, Flint A L, 1990.Physical properties of forest soils containing rock fragments[C]// Gessel S P, Lacate GF W, Power R F.Sustained Productivity of Forest Soils.Vancouver, B.C.: University of British Columbia, Faculty of Forestry Publ., 95-121.
[3]Clapp R B, Hornberger G M, 1978.Empirical equations for some soil hydraulic properties.[J].Water Resources Rescarch, 14(4): 601-604.
[4]Cosby B J, Hornberger G M, Clapp R B, et al, 1984.A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils[J].Water Resources Research, 20(6): 682-690.
[5]Farouki O T, 1981.The thermal properties of soils in cold regions[J].Cold Regions Science and Technology, 5(1): 67-75.
[6]Ji J J, 1995.A climate-vegetation interaction model: Simulating physicaland biological processes at the surface[J].Journal of Biogeography, 22(2-3): 445-451.
[7]Ji J J, Huang M, Li K R, 2008.Prediction of carbon exchanges between China terrestrial ecosystem and atmosphere in 21st century [J].Science in China (Earth Sciences), 51(6): 885-898.
[8]Li X Y, 2002.Effects of gravel and sand mulches on dew deposition in the semiarid region of China[J].Journal of Hydrology, 260(1-4): 151-160.
[9]Mehuys G R, Stolzy L H, Letey J, et al, 1975.Effect of stones on the hydraulic conductivity of relatively dry desert soils[J].Soil Science Society of America Journal, 39(1): 37-42.
[10]Ohtsuka T, Hirota M, Zhang X, et al, 2008.Soil organic carbon pools in alpine to nival zones along an altitudinal gradient (4400-5300 m) on the Tibetan Plateau[J].Polar Science, 2(4): 277-285.
[11]Wu X D, Zhao L, Fang H B, et al, 2012.Soil enzyme activities in permafrost regions of the western Qinghai-Tibetan Plateau[J].Soil Science Society of America Journal, 76(4): 1280-1289.
[12]Wu T W, 2012.A mass-flux cumulus parameterization scheme for large-scale models: Description and test with observations [J].Climate Dynamics, 38 (3/4): 725-744.
[13]Yi S, Chen J, Wu Q, 2013.Simulating the role of gravel on the dy-namics of permafrost on the Qinghai-Tibetan Plateau[J].The Cryosphere Discuss, 7(5): 4703-4740.
[14]卞林根, 陆龙骅, 逯昌贵, 等, 2001.1998年夏季青藏高原辐射平衡分量特征[J].大气科学, 25(5): 577-588.DOI: 10.3878/j.issn. 1006-9895.2001.05.01.
[15]董敏, 吴统文, 王在志, 等, 2009.北京气候中心大气环流模式对季节内振荡的模拟[J].气象学报, 67(6): 912-922.DOI: 10. 3321/j.issn.577-6619.2009.06.002.
[16]郭准, 吴春强, 周天军, 等, 2011.LASG/IAP和BCC大气环流模式模拟的云辐射强迫之比较[J].大气科学, 35(4): 739-752.
[17]栾澜, 孟宪红, 吕世华, 等, 2018.青藏高原土壤湿度触发午后对流降水模拟试验研究[J].高原气象, 37(4): 873-885.DOI: 10.7522/j.issn.1000-0534.2018.00008.
[18]罗斯琼, 吕世华, 张宇, 等, 2008.CoLM模式对青藏高原中部BJ站陆面过程的数值模拟[J].高原气象, 27(2): 262-271.
[19]马翠丽, 吕世华, 潘永洁, 等, 2020a.陆面模式砾石参数化在BCC_AVIM陆面过程模式中的应用及检验 [J/OL].高原气象, 39(6): 1232-1245.DOI: 10.7522/j.issn.1000-0534.2019. 00129.[2020-06-25].https: //kns.cnki.net/kcms/detail/62.1061.P. 20200629.1056. 002.html.
[20]马翠丽, 吕世华, 潘永洁, 等, 2020b.砾石参数化对青藏高原陆面过程模拟的影响及敏感性分析[J].高原气象, 39(6): 1219-1231.DOI: 10.7522/j.issn.1000-0534.2020.00005.[2020-09-25].https: //kns.cnki.net/kcms/detail/62.1061.P.20200927. 0850. 006.html.
[21]马英赛, 孟宪红, 韩博, 等, 2019.黄土高原土壤湿度对地表能量和大气边界层影响的观测研究[J].高原气象, 38(4): 705-715.DOI: 10.7522/j.issn.1000-0534.2019.00036.
[22]潘永洁, 吕世华, 高艳红, 等, 2015.砾石对青藏高原土壤水热特性影响的数值模拟[J].高原气象, 34(5): 1224-1236.DOI: 10.7522/j.issn.1000-0534.2014.00055.
[23]吴统文, 宋连春, 李伟平, 等, 2014.北京气候中心气候系统模式研发进展——在气候变化研究中的应用[J].气象学报, 72(1): 12-29.