根据鄂陵湖畔高寒草地站点2011 -2013年的观测数据, 分析了冻结期高寒草甸地表能量通量平衡特征, 在假定冻结期土层中各相态水的质量近似稳定的基础上, 对热储项进行了定量分析。由于缺少对积雪深度的直接观测, 根据地表反照率定义了积雪期。首先对冻结期地表能量特征进行了比较, 发现无积雪时地表波文比多数时候大于3, 而在积雪期, 波文比大多时候小于0.5。有积雪时土壤各层温度平均日较差都显著地减小, 其中0.05 m处土壤温度日较差相较于无积雪时减少4 ℃。伴随温度日较差减小, 积雪期土壤内相变过程也会减弱, 引起土壤湿度变化幅度的减少。积雪层可以吸收短波辐射, 因此有积雪存在时, 地表能通量传输过程需重新考虑。计算热储后发现, 非积雪期土壤温度变化和相变过程贡献的热储项分别占不闭合能量(简称占比)的69%和12%, 这个比例在阴天和晴天也会存在不同。在积雪期, 积雪热储项占比为88%, 而土壤热储占比仅为10%左右。与晴天相比, 阴天积雪热储占比下降, 土壤热储占比上升。这说明短波辐射增强会迅速增加积雪吸收的热量, 但对积雪下冻土的影响却很小。对于冻结期中非积雪期闭合度的分析, 同时考虑土壤温度和相变热储时闭合度会增加0.01~0.02, 且阴天闭合度整体大于晴天。
齐木荣
,
马千惠
,
杨清华
,
吴仁豪
,
吕世华
,
孟宪红
,
李照国
,
奥银焕
,
韩博
. 青藏高原冻结期地表热储分析——以鄂陵湖畔草地为例[J]. 高原气象, 2020
, 39(6)
: 1270
-1281
.
DOI: 10.7522/j.issn.1000-0534.2019.00134
Based on the observation from a flux site over alpine meadow near Ngoring Lake, the surface energy flux balance status was studied in frozen periods from 2011 to 2013.The snow-covered period is defined as the observed surface albedo greater than 0.4.The Bowen-ratio in no-snow period was usually more than 3, while in the snow-covered periods less than 0.5.The soil heat storage was mainly focused in this study.The total mass of water in soil (liquid and solid form) was assumed to be changed little during the frozen period based on observation fact.The soil heat storage was contributed by two kinds of process.The first is due to the change in soil temperature, and the second is due to free-thaw cycle within soil.In no-snow period, the soil heat storage rates due to temperature change and freeze-thaw cycle have contributed 69% and 12% of the unbalanced surface energy fluxes, respectively.The ratio between these two kinds of heat storage depend on the cloudiness.The free-thaw cycle was more significant in a clear day than in a cloudy day.The closure ratio will increase a little when take both two kinds of process into consideration.While during the snow-covered periods, the heat storage in snow layer accounted for 88%, while the soil heat storage only accounted for nearly 10% of the unclosed energy fluxes.The ratio of heat storage between in soil and snow also changed with cloudiness.The heat storage in snow was more dominant in a clear day than in a cloudy day.
[1]Bian L G, Xu D Y, Lu L Y, et al, 2003.Analyses of turbulence parameters in the near-surface layer at Qamdo of the southeastern Tibetan Plateau[J].Advances in Atmospheric Sciences, 20(3): 369-378.
[2]Han B, Meng X H, Yang Q H, et al, 2020.Connections between daily surface temperature contrast and CO2 flux over a Tibetan lake: A case study of Ngoring Lake[J].Journal of Geophysical Research: Atmospheres, 125(6): D032277.DOI: 10.1029/2019JD032277.
[3]Steven P O, Thomas F, Roland V, et al, 2007.The Energy balance experiment EBEX-2000.Part I: Overview and energy balance[J].Boundary-Layer Meteorology, 123(1): 1-28.DOI: 10.1007/s10546-007-9161-1.
[4]Yang K, Wang J M, 2008.A temperature prediction-correction method for estimating surface soil heat flux from soil temperature and moisture data[J].Science in China Series D: Earth Sciences, 51(5): 721-729.DOI: 10.1007/s11430-008-0036-1.
[5]Yang Y, Liu Y, Li M, et al, 2019.Assessment of reanalysis flux products based on eddy covariance observations over the Tibetan Plateau[J].Theoretical and Applied Climatology, 138(1-2): 275-292.
[6]Zhao P, li Y Q, Guo X L, et al, 2019.The Tibetan Plateau surface-atmosphere coupling system and its weather and climate effects: The third Tibetan Plateau atmospheric science experiment[J].Journal of Meteorological Research, 33(3): 375-399.DOI: 10.1007/s13351-019-8602-3.
[7]程国栋, 赵林, 李韧, 等, 2019.青藏高原多年冻土特征、 变化及影响[J].科学通报, 64(27): 2783-2795.DOI: 10.1360/TB-2019-0191.
[8]陈月, 李跃清, 范广洲, 等, 2019.青藏高原大气蕴含潜热时空分布特征研究[J].高原气象, 38(3): 460-473.DOI: 10.7522/j.issn.1000-0534.2018.00130.
[9]段安民, 肖志祥, 王子谦, 2018.青藏高原冬春积雪和地表热源影响亚洲夏季风的研究进展[J].大气科学, 42(4), 755-766.DOI: 10.3878/j.issn.1006-9895.1801.17247.
[10]戴黎聪, 柯浔, 张法伟, 等, 2019.青藏高原季节冻土区土壤冻融过程水热耦合特征[J].冰川冻土, 42(2): 1-10.DOI: 10.7522/j.issn.1000-0240.2018.1085.
[11]付强, 颜培儒, 李天霄, 等, 2018.冻融期秸秆和积雪覆盖条件下土壤热容量的特性研究[J].应用基础与工程科学学报, 26(4), 757-766.DOI: 10.16058/j.issn.1005-0930.2018.04.007.
[12]葛骏, 余晔, 李振朝, 等, 2016.青藏高原多年冻土区土壤冻融过程对地表能量通量的影响研究[J].高原气象, 35(3): 608-620.DOI: 10.7522/j.issn.1000-0534.2016.00032.
[13]谷星月, 马耀明, 马伟强, 等, 2018.青藏高原地表辐射通量的气候特征分析[J].高原气象, 37(6): 1458-1469.DOI: 10.7522 / j.issn.1000-0534.2018.00051.
[14]季国良, 1999.青藏高原能量收支观测实验的新进展[J].高原气象, 18(3): 333-340.
[15]姜海梅, 刘树华, 刘和平, 2012.非均匀灌溉棉田能量平衡特征研究[J].地球物理学报, 55(2): 428-440.DOI: 10.6038/j.issn. 0001-5733.2012.02.007.
[16]金莉莉, 曹兴, 黄洁, 2011.沙漠和绿洲典型天气辐射特征[J].干旱气象, 29(3): 306-314.
[17]蒋元春, 李栋梁, 郑然, 2020.1971—2016年青藏高原积雪冻土变化特征及其与植被的关系[J].大气科学学报, 43(3): 481-494.
[18]李丹华, 文莉娟, 隆霄, 等, 2017.积雪对玛曲局地微气象特征影响的观测研究[J].高原气象, 36(2): 330-339.DOI: 10.7522/j.issn.1000-0534.2016.00074.
[19]刘火霖, 胡泽勇, 韩赓, 等, 2020.基于Noah-MP模式的影响青藏高原冻融过程参数化方案评估[J].高原气象, 39(1): 1-14.DOI: 10.7522/j.issn.1000-0534.2019.00009.
[20]李静, 盛煜, 焦士兴, 2009.高山多年冻土分布模型与制图研究进展[J].冰川冻土, 31(4): 679-687.
[21]李茂善, 马耀明, 孙方林, 等, 2008.纳木错湖地区近地层微气象特征及地表通量交换分析[J].高原气象, 27(4): 727-732.
[22]李跃清, 2011.第三次青藏高原大气科学试验的观测基础[J].高原山地气象研究, 31(3): 77-82.
[23]李照国, 吕世华, 奥银焕, 等, 2012.鄂陵湖湖滨地区夏季近地层微气象特征与碳通量变化分析[J].地理科学进展, 31(5): 602-608.
[24]马伟强, 马耀明, 胡泽勇, 等, 2005.藏北高原地区辐射收支和季节变化与卫星遥感的对比分析[J].干旱区资源与环境, 19(1): 109-115.
[25]马耀明, 姚檀栋, 王介民, 2006a.青藏高原能量和水循环试验研究——GAME/Tibet与CAMP/Tibet研究进展[J].高原气象, 25(2): 344-351.
[26]马耀明, 仲雷, 田辉, 等, 2006b.青藏高原非均匀地表区域能量通量的研究[J].遥感学报, 10(4): 542-547.
[27]马英赛, 孟宪红, 韩博, 等, 2019.黄土高原土壤湿度对地表能量和大气边界层影响的观测研究[J].高原气象, 38 (4): 705-715.DOI: 10.7522/j.issn.1000-0534.2019.00036.
[28]钱正安, 焦彦军, 1997.青藏高原气象学的研究进展和问题[J].地球科学进展, 12(3): 207-216.
[29]盛光伟, 肖鹏峰, 张学良, 等, 2019.新疆天山及北疆地区积雪反照率差异[J].干旱区地理, 42(4): 774-781.DOI: 10.12118/j.issn.1000-6060.2019.04.08.
[30]王澄海, 师锐, 左洪超, 2008.青藏高原西部冻融期陆面过程的模拟分析[J].高原气象, 27(2): 239-248.
[31]王介民, 1999.陆面过程实验和地气相互作用研究——从HEIFE到IMGRASS和GAME-Tibet/TIPEX[J].高原气象, 18(3): 280-294.
[32]武荣盛, 马耀明, 2010.青藏高原不同地区辐射特征对比分析[J].高原气象, 29(2): 251-259.
[33]王婷, 李照国, 吕世华, 等, 2019.青藏高原积雪对陆面过程热量输送的影响研究[J].高原气象, 38(5): 920-934.DOI: 10.7522/j.issn.1000-0534.2019.00026.
[34]王永杰, 朱志鹍, 李茂善, 2010.藏东南地区鲁朗河谷近地层气象要素变化特征[J].高原气象, 29(1): 63-69.
[35]周长艳, 张虹娇, 赵兴炳, 等, 2012.近三十多年青藏高原大气科学试验观测布局综述[J].高原山地气象研究, 32(1): 81-87.DOI: 1674-2184 (2012) 01-0081-07.
[36]周甘霖, 李耀辉, 孙旭映, 等, 2019.我国北方不同下垫面地表能量通量的变化特征[J].干旱气象, 37(4), 577-585 DOI: 10. 11755/j.issn.1006-7639 (2019) -04-0577.
[37]张海宏, 肖宏斌, 祁栋林, 等, 2017.青藏高原湿地土壤冻结、 融化期间的陆面过程特征[J].气象学报, 75(3): 481-491.DOI: 10.11676/qxxb2017.034.
[38]张明礼, 温智, 董建华, 等, 2020.考虑降雨作用的多年冻土区不同地表土质活动层水热过程差异分析[J].岩土力学, 41(5): 1-11.DOI: 10.16285/j.rsm.2019.0297.
[39]张正, 肖鹏峰, 张学良, 等, 2019.青藏高原融雪期积雪反照率特性分析[J].遥感技术与应用, 34(6): 1146-1154.DOI: 10. 11873/j.issn.1004-0323.2019.6.1146.