利用中国自动站与CMORPH降水产品融合的逐时降水量0.1°×0.1°网格数据集、1°×1° NCEP再分析气象资料、常规观测资料和高分辨率的WRF数值模拟资料对2016年4月13日前后发生在华南的一次飑线升尺度增长过程进行了动力和热力环境条件分析。飑线形成前, 对流层高层有急流, 华南位于急流入口区右侧, 有利于高空辐散。高空有弱槽存在, 并且温度槽落后于高度槽, 有利于槽发展。近地面上有低压系统控制, 并且有风场的辐合, 加强了抬升运动。模拟的结果表明: WRF模式成功模拟了此次飑线升尺度过程, 飑线的降水量和落区较为接近实况。与以往的飑线过程相比, 此次飑线过程中, 升尺度阶段有效位能较初始对流阶段要高, 但是整个华南地区对流有效位能始终处于中低水平。除了天气尺度系统的影响, 多种中尺条件的配合对这次飑线升尺度发展很有利。低层的垂直风切变、低位涡和较高温度递减率是触发条件, 提供了一定的不稳定条件和抬升条件。低层风场转向加强, 垂直风切变的方向改变, 充足的水汽供应和后部入流的加深加剧了不稳定和垂直抬升运动, 是促进β中尺度飑线升尺度的重要条件。冷池在升尺度阶段不明显, 但冷池对维持成熟阶段的α中尺度飑线结构很重要。
In this paper, in order to better investigate the process of squall line, the national automatic weather stations and CMORPH product at 0.1°×0.1° resolution、NCEP(National Centers for Environmental Precipitation) 1°×1° reanalysis meteorological data、regular observation data and high-resolution WRF numerical simulation data are used to analyze the dynamic and thermal environmental conditions of the upscaling growth process of a squall line in south China around April 13, 2016.Before the formation of the squall line, there is a upper-level jet stream in the upper troposphere.South China is located on the right side of the entrance of the upper-level jet stream.There is a weak height trough in the upper level, and the temperature trough lags behind the height trough, which is beneficial to the development of the height trough.There is a low-pressure system on the surface and There is convergence of airflow in the low level of south China, which enhances the lifting movement.The simulation results show that The WRF model successfully simulates the upscale process of squall line, and the precipitation and the falling area of the squall line are relatively close.At the same time, compared with the previous squall lines, the convective available potential energy during the upscaling phase is higher than the initial convection phase, but the convective available potential energy in the entire south China region is at a low and middle level.In addition to the influence of synoptic scale system, the cooperation of various mesoscale conditions is beneficial to the upscaling development of squall line.The triggering conditions are vertical wind shear, low potential vorticity (PV) and high temperature declining rate in the lower level, which provide certain unstable conditions and lifting conditions.Low-level wind field turning and wind velocity strengthening, changes in the direction of vertical wind shear, sufficient water vapor supply and deepening of the rear inflow enhance instability and vertical lifting motion, which are important conditions for promoting the upscale growing of meso-β-scale squall line.The cold pool is not obvious during the upscale growing, but the cold pool is important for maintaining the meso-α-scale squall line structure in the mature stage.
[1]Fujita T, 1955.Results of detailed synoptic studies of squall lines[J].Tellus, 7(4): 405-436.
[2]Fujita T, 1963.Analytical mesometeorology: A review[J].Meteorological Monographs, 5(27): 77-125.
[3]Houze R A, Biggerstaff M I, Rutledge S A, et al, 1989.Interpretation of Doppler weather radar displays of midlatitude mesoscale convective systems[J].Bulletin of the American Meteorological Society, 70(6): 608-619.
[4]Meng Z Y, Zhang F Q, Markowski P, et al, 2012.A modeling study on the development of a bowing structure and associated rear inflow within a squall line over south China[J].Journal of the Atmospheric Sciences, 69(4): 1182-1207.
[5]Meng Z Y, Yan D C, Zhang Y J, 2013.General features of squall lines in east China[J].Monthly Weather Review, 141(5): 1629-1647.
[6]Newton C W, 1950.Structure and mechanism of the prefrontal squall line[J].Journal of Meteorology, 7(3): 210-222
[7]Newton C W, 1966.Circulations in large sheared cumulonimbus[J].Tellus, 18(4): 699-713.
[8]Parker M D, Johnson R H, 2000.Organizational modes of midlatitude mesoscale convective [J].Monthly Weather Review, 128: 3431-3436.
[9]Rotunno R, Klemp J B, Weisman M L, 1988.A theory for strong, long-lived squall lines[J].Journal of the Atmospheric Sciences, 45(3): 463-485.
[10]Weisman M L, 1992.The role of convectively generated rear inflow jets in the evolution of long-lived mesoconvective systems[J].Journal of the Atmospheric Sciences, 49: 1826-1847.
[11]Zhang D L, Gao K, Parsons D B, 1989.Numerical simulation of an intense squall line during 10-11 June 1985 PRE-STORM.Part I: Model verification [J].Monthly Weather Review, 117: 960-994.
[12]陈明轩, 王迎春, 2012.低层垂直风切变和冷池相互作用影响华北地区一次飑线过程发展维持的数值模拟[J].气象学报, 70(3): 371-386.
[13]丁一汇, 李鸿洲, 章名立, 等, 1982.我国飑线发生条件的研究[J].大气科学, 6(1): 18-27.
[14]李娜, 冉令坤, 高守亭, 2013.华东地区一次飑线过程的数值模拟与诊断分析 [J].大气科学, 37 (3): 595-608.
[15]马申佳, 陈超辉, 何宏让, 等, 2018.基于BGM的对流尺度集合预报试验及其检验[J].高原气象, 37(2): 495-504.DOI: 10. 7522/j.issn.1000-0534.2017.00073.
[16]沈新勇, 岳俗甲, 刘佳, 等, 2016.凝结潜热释放和地表热通量对一次飑线过程的影响 [J].气象科学, 36 (6): 709-720.
[17]寿绍文, 励申申, 姚秀萍, 2003.中尺度气象学(第三版)[M].北京: 气象出版社, 3-5.
[18]陶局, 易笑园, 赵海坤, 等, 2019.一次飑线过程及其受下垫面影响的数值模拟[J].高原气象, 38(4): 756-772.DOI: 10.7522/j.issn.1000-0534.2019.00035.
[19]席乐, 闵锦忠, 王仕奇, 2018.一次华南强飑线过程的数值模拟及后方入流作用诊断[J].气象科学, 38( 6): 739-748.
[20]姚晨, 戴娟, 刘晓蓓, 2013.江淮流域长生命史飑线的特征分析与临近预警[J].气象科学, 33(5): 577-583.
[21]章国才, 2001.强对流天气分析与预报[M].北京: 气象出版社.
[22]翟丽萍, 农孟松, 赖珍权, 等, 2018.广西“4·20”暖区飑线的形成及结构[J].高原气象, 37(2): 568-576.DOI: 10.7522/j.issn. 1000-0534.2017.00058.
[23]张弛, 王咏青, 廖玥, 等, 2019.初始场与云微物理参数方案在飑线数值模拟中的对比研究[J].高原气象, 38(2): 410-420.DOI: 10.7522/j.issn.1000-0534.2018.00084.
[24]张健宏, 2004.风暴相对螺旋度的应用[J].陕西气象, 47(3): 5-7.
[25]张腾飞, 张杰, 张思豆, 等, 2018.云南南支槽飑线雹暴中尺度特征及环境条件[J].高原气象, 37(4): 958-969.DOI: 10.7522/j.issn.1000-0534.2017.00093.
[26]朱乾根, 林锦瑞, 寿绍文, 等, 2007.天气学原理和方法(第四版)[M].北京: 气象出版社, 407-415.