利用MODIS和CERES遥感数据研究青藏高原的云辐射强迫效应

  • 陈光灿 ,
  • 李函璐 ,
  • 傅云飞
展开
  • 中国科学技术大学地球和空间科学学院,安徽 合肥 230026

收稿日期: 2019-07-23

  网络出版日期: 2021-02-28

基金资助

国家自然科学基金项目(91837310);第二次青藏高原综合科学考察研究项目(2019QZKK0104);国家重点研发计划课题(2018YFC1507200);国家公益性行业支撑项目(GYHY201406001);安徽省重点研究与开发计划(201904a07020099)

The Analysis of the Cloud’s Radiative Forcing Effect over Qinghai-Xizang Plateau Based on MODIS and CERES Data

  • Guangcan CHEN ,
  • Hanlu LI ,
  • Yunfei FU
Expand
  • School of Earth and Space Sciences,University of Science and Technology of China,Hefei 230026,Anhui,China

Received date: 2019-07-23

  Online published: 2021-02-28

摘要

准确估算青藏高原的云辐射效应, 对分析该地区的近地面感热通量十分重要。本文首先利用加权平均方法, 分别将中分辨率成像光谱仪(MODIS)、 测云雷达(CPR)和云与地球辐射能量系统(CERES)的像元数据进行融合。利用这些数据, 分析了青藏高原上多云个例(2017年5月5日)与少云个例(2017年8月2日)情况下的可见光通道和热红外通道的信号、 云参数和大气长短波辐射强迫等的差异。研究表明, 少云时高原地区的大气顶大气长波辐射强迫为108.3 W·m-2, 多云时为104.5 W·m-2。同时少云个例中塔里木盆地的大气顶大气长波辐射强迫为200.7 W·m-2, 表明该辐射强迫受到地表热力状况影响较大。深厚与浅薄云区的云顶高度相差不大, 但多云个例中深厚云区的短波辐射强迫是浅薄云区的2倍多, 这一比例远大于长波。这表明短波辐射强迫对云厚度较敏感。最后, 本文分析了CERES观测的大气顶长短波辐射分别与MODIS热红外和可见光通道之间的关系, 结果表明它们存在很好的相关性(相关系数超过0.95), MODIS的可见光通道可以用于估算大气顶的短波辐射量, 而MODIS的热红外通道只可用来估算云区的大气顶长波辐射量。

本文引用格式

陈光灿 , 李函璐 , 傅云飞 . 利用MODIS和CERES遥感数据研究青藏高原的云辐射强迫效应[J]. 高原气象, 2021 , 40(1) : 15 -27 . DOI: 10.7522/j.issn.1000-0534.2019.00107

Abstract

Accurate estimation of cloud radiation effects on the Qinghai-Xizang Plateau is essential for analyzing the near-surface sensible heat flux.The weighted average method was used to merge the data of MODerate-resolution Imaging Spectroradiometer (MODIS), CloudSat Profiling Radar (CPR), and Clouds and the Earth’s Radiant Energy System (CERES).The discrepancy between the visible and infrared channel, cloud parameter, and the radiative forcing (RF) in two cases (May 5, 2017 for cloudy, August 2, 2017 for cloudless) were analyzed base on the merged data.The results show that the atmospheric longwave RF at the top of the atmosphere (TOA) in the cloudless case is 108.3 W·m-2, in the cloudy case is 104.5 W·m-2.The atmospheric longwave RF at the TOA on the Tarim Basin is 200.7 W·m-2 in the cloudless case.It indicates that longwave RF is strongly influenced by surface thermal conditions.The results also show that there exists a little discrepancy between the deep and the shallow cloud at the cloud top height.The shortwave RF of the deep cloud in ??the cloudy case is more than twice that of the shallow cloud.This ratio is much larger than that of the longwave.It indicates that shortwave RF is more sensitive to cloud thickness.Finally, not only the relationship between the longwave radiation and infrared signal but also the relationship between the shortwave radiation and visible signal were simultaneously analyzed.The results show that they both have a strong correlation (correlation coefficients exceed 0.95), indicating the signals of the visible channels measured by MODIS can be used to estimate the shortwave radiation at the TOA, while the signals of the thermal channels can only be used to estimate the longwave radiation at the TOA at the cloudy condition.

参考文献

[1]Barnes W L, Pagano T S, Salomonson V V, 1998.Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1[J].IEEE Transactions on Geoscience and Remote Sensing, 36: 1088-1100.DOI: 10.1109/36.700993.
[2]Boucher O, Randall D, Artaxo P, et al, 2013.Clouds and aerosols[M].Cambridge University Press, 2013: 595-605.DOI: 10. 1017/cbo9781107415324.
[3]Chen Y L, Chong K Z, Fu Y F, 2019.Impacts of distribution patterns of cloud optical depth on the calculation of radiative forcing [J].Atmospheric Research, 218(4): 70-77.DOI: 10.1016/j.atmosr-es. 2018.11.007.
[4]Dewitte S, Clerbaux N, 1999.First experience with GERB ground segment processing software: Validation with CERES PFM data [J].Advances in Space Research, 24(7): 925-929.DOI: 10. 1016/S0273-1177(99)00357-9.
[5]Dines W H, 1917.The heat balance of the atmosphere [J].Quarterly Journal of the Royal Meteorological Society, 43: 151-158.
[6]Fu Y F, Pan X, Xian T, et al, 2018.Precipitation characteristics over the steep slope of the Himalayas in rainy season observed by TRMM PR and VIRS [J].Climate Dynamics, 51(11): 1971-1989.DOI 10.1007/s00382-017-3992-3.
[7]Geier E B, Green R N, Kratz D P, et al, 2003.Clouds and the Earth’s Radiant Energy System (CERES) data management system: Single satellite footprint TOA/surface fluxes and clouds (SSF) collection document.Release 2, version 1 [M], NASA Langley Research Center, 235 pp.[2019-07-10].http: //asd-www.larc.nasa.gov/ceres/collect_guide/SSF_CG.pdf.
[8]Hansen J, Sato M, Ruedy R, 1997.Radiative forcing and climate response [J].Journal Geophysical Research, 102(6): 6831-6864.DOI: 10.1029/96JD03436.
[9]Huang J P, Minis P, Lin B W, et al, 2006.Possible influences of asian dust aerosols on cloud properties and radiative forcing observed from MODIS and CERES [J].Geophysical Research Letters, 33(6): 4-7.DOI: 10.1029/2005gl024724.
[10]King M D, Kaufman Y J, Menzel W P, et al, 1992.Remote sensing of cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS) [J].IEEE Transactions on Geoscience and Remote Sensing, 30: 2-27.DOI: 10. 1109/36.124212.
[11]Lee III R B, Priestley K J, Barkstrom B R, et al, 2000.Terra spacecraft CERES flight model 1 and 2 sensor measurement precisions: ground-to-flight determinations [J].Earth Observing Systems V, 4135: 1-12.DOI: 10.1117/12.494216.
[12]Li Z L, Tang B H, Wu H, et al, 2013.Satellite-derived land surface temperature: Current status and perspectives [J].Remote sensing of environment, 131: 14-37.DOI: 10.1016/j.rse.2012.12.008.
[13]Loeb G N, Manalo-Smith N, Su W, et al, 2016.CERES top-of-atmosphere earth radiation budget climate data record: Accounting for in-orbit changes in instrument calibration [J].Remote Sensing, 8(3): 182-196.DOI: 10.3390/rs8030182.
[14]Ramanathan V, Cess R D, Harrison E F, et al, 1989.Cloud-radiative forcing and climate: Results from the earth radiation budget experiment [J].Science, 243(4887): 57-63.DOI: 10.1126/science.243.4887.57.
[15]Stephens G L, Vane D G, Boain R J, et al, 2002.The CloudSat mission and the A-Train [J].Bulletin of the American Meteorological Society, 83(12): 1771-1790.DOI: 10.1175/BAMS-83-12-1771.
[16]Wielicki B A, Barkstrom B R, Harrison E F, et al, 1996, Clouds and the Earth’s Radiant Energy System(CERES): An earth observing system experiment [J].Bulltin of the American Meteorological Society, 77(5): 853-868.
[17]Yan H R, Huang J P, Minnis P, et al, 2011.Comparison of CERES surface radiation fluxes with surface observations over Loess Plateau [J].Remote Sensing of Environment, 115(6): 1489-1500.DOI: 10.1016/j.rse.2011.02.008.
[18]Zelinka M D, Randall D A, Webb M J, et al, 2017.Clearing clouds of uncertainty [J].Nature Climate Change, 7(10): 674-78.DOI: 10.1038/nclimate3402.
[19]陈凤娇, 傅云飞, 2015.基于PR和VIRS融合资料的东亚台风和非台风降水结构分析[J].气候与环境研究, 20 (2): 188-200.DOI: 10.3878/j.issn.1006-9585.2014.14031.
[20]冯松, 汤懋苍, 王冬梅, 1998.青藏高原是我国气候变化启动区的新证据[J].科学通报, 43 (6): 633-636.
[21]傅云飞, 刘鹏, 刘奇, 等, 2011.夏季热带及副热带降水云可见光/红外信号气候分布特征[J].大气与环境光学学报, 6 (2): 129-140.DOI: 10.3969/j.issn.1673-6141.2011.02.009.
[22]谷星月, 马耀明, 马伟强, 等, 2018.青藏高原地表辐射通量的气候特征分析[J].高原气象, 37 (6): 1458-1469.DOI: 10.7522/j.issn.1000-0534.2018.00051.
[23]季国良, 姚兰昌, 王文华, 1985.1982 -1983年青藏高原热源野外考察概况[J].高原气象, 4(增刊): 1-9.
[24]李宏毅, 肖子牛, 朱玉祥, 等, 2018.藏东南地区草地下垫面湍流通量和辐射平衡各分量的变化特征[J].高原气象, 37 (4): 923-935.DOI: 10.7522/j.issn.1000-0534.2017.00097.
[25]李跃清, 2011.第三次青藏高原大气科学试验的观测基础[J].高原山地气象研究, 31(3): 77-82.DOI: 10.3969/j.issn.1674-2184.2011.03.016.
[26]莫申国, 张百平, 程维明, 等, 2004.青藏高原的主要环境效应[J].地球科学进展, 23(2): 88-96.DOI: 10.3969/j.issn. 1007-6301.2004.02.011.
[27]潘保田, 李吉均, 1996.青藏高原: 全球气候变化的驱动机与放大器——Ⅲ.青藏高原隆起对气候变化的影响[J].兰州大学学报(自然科学版), 32(1): 108–115.
[28]盛裴轩, 毛节泰, 李建国, 等, 2003.大气物理学[M].北京: 北京大学出版社, 67.
[29]陶诗言, 罗四维, 张鸿材, 1984.1979年5-8青藏高原气象科学实验及其观测系统[J].气象, 10(7): 2-5.
[30]吴国雄, 刘屹岷, 刘新, 等, 2005.青藏高原加热如何影响亚洲夏季的气候格局[J].大气科学, 29(1): 47-56.DOI: 10.3878/j.issn.1006-9895.2005.01.06.
[31]叶笃正, 罗四维, 朱抱真, 1957.西藏高原及其附近的流场结构和对流层大气的热量平衡[J].气象学报, 28(2): 108-121.DOI: 10.11676/qxxb1957.010.
[32]叶笃正, 高由禧, 1979.青藏高原气象学[M].北京: 科学出版社, 7-9.
[33]于涵, 张杰, 刘诗梦, 2018.基于CERES卫星资料的青藏高原有效辐射变化规律[J].高原气象, 37(1): 106-122.DOI: 10. 7522/j.issn.1000-0534.2017.00045.
[34]宇路, 傅云飞, 2017.基于星载微波雷达和激光雷达探测的夏季云顶高度及云量差异分析[J].气象学报, 75(6): 955-965.DOI: 10.11676/qxxb2017.070.
[35]张镱锂, 李炳元, 郑 度, 2014.青藏高原范围与界线地理信息系统数据[DB/OL].全球变化科学研究数据出版系统.DOI: 10. 3974/geodb.2014.01.12.V1.
[36]张丁玲, 黄建平, 刘玉芝, 等, 2012.利用 CERES (SYN) 资料分析青藏高原云辐射强迫的时空变化[J].高原气象, 31(5): 1192-1202.
文章导航

/