利用山东省气象站的降水量资料和JRA-55、 NCEP/NCAR再分析资料, 分析了1962 -2016年山东夏季整层大气可降水量、 降水转化率、 水汽通量及输送路径的分布特征和变化规律, 探讨了夏季降水与水汽通量及其散度的相关性和多雨年的水汽来源。结果表明: 从常年值来看, 山东平均夏季降水量为401.2 mm, 大气可降水量为3478.8 mm, 降水转化率为11.5%。降水转化率和降水量的时空演变特征更加一致, 经向水汽输送和局地水汽通量散度与地面有效降水的关系更加密切, 当大气可降水量充沛、 外部水汽输送充足并出现局地水汽辐合时, 更加有利于山东南部地区降水的发生发展, 从而形成夏季降水量和降水转化率气候特征表现出东南地区大于西北地区的空间分布型态。西北太平洋、 南海、 孟加拉湾和鄂霍茨克海至日本海是造成山东夏季降水异常偏多的重要水汽源地, 巴尔喀什湖至贝加尔湖地区是重要的冷空气输送区域; 当山东上游盛行偏西风时, 自新疆和青藏高原至内蒙古的狭长带出现异常水汽扰动并发展, 是由水汽异常引起的水汽通量异常对山东局地降水异常贡献的主要条件。
Based on monthly rain-gauge precipitation data and JRA-55, NCEP/NCAR reanalysis data, the climatology distributional and variational characteristics of whole atmospheric column precipitable water, precipitation conversion efficiency, water vapor flux and transport during summertime from 1962 to 2016 in Shandong Province were investigated; The correlativity between summer precipitation and both moisture fluxes and divergences, as well as the water vapor sources in above normal rainfall years, were discussed.Results indicate that: As for the climatology, averaged precipitation, precipitable water, and precipitation conversion efficiency are 401.2 mm, 3478.8 mm and 11.5%, respectively.The spatial-temporal evolutions exhibit more consistent for precipitation and precipitation conversion efficiency compared with that of summer rainfall and whole atmospheric column precipitable water, which are even opposite in some specific years or periods.The surface effective precipitation tends to be more influenced by meridional water vapor transport and regional moisture flux divergences.When the atmospheric precipitable water and water vapor transport are abundant, the regional moisture convergence is more favorable for the occurrence and development of precipitation in the southern part of Shandong, thus make the special climatology of both rainfall and precipitation conversion efficiency distribute as more rainfall in the southeast Shandong than that in the northwestern part.By comparison, the main source of water vapor in rainy years is transported from the Northwest Pacific by the easterly and southerly of the western North Pacific subtropical high, lead to strong convergence in the southeastern Shandong; While in the heavy rainy years, water vapor in the tropical Pacific and the Indian Ocean also transported by both tropical and middle-high latitude general circulation systems, the Philippine Anticyclone, cross-equatorial flow and westerly of an anticlockwise moisture flux center located in Outer Mongolia for instance, thus give rise to intensive convergence in the west and south part of Shandong.The Northwest Pacific, South China Sea, Bay of Bengal, and Okhotsk to Japan Sea are significant water vapor sources which could bring about more summer rainfall in Shandong.Besides, the essential cold-air activity area extends from Balkhash Lake to Baikal.When the upstream region of Shandong prevails westerly wind, an anomalous water vapor disturbance appeared and developed in a belt area from Xinjiang and the Qinghai-Xizang Plateau to Inner Mongolia is the main factor for precipitation anomaly arising from anomalous moisture transported by mean circulation.
[1]Chen T C, Tzeng R Y, 1990.Global-scale intra-seasonal and annual variation of divergent water vapor flux[J].Meteorology and Atmospheric Physics, 44: 133-151.
[2]Kalnay E, Kanamitsu M, Kisfler R, et al, 1996.The NCEP/NCAR 40-year reanalysis project[J].Bulletin of the American Meteorological Society, 77(3): 437-471.
[3]Kobayashi S Y, Ota Y, Harada A, et al, 2015.The JRA-55 reanalysis: General specifications and basic characteristics[J].Journal of the Meteorological Society of Japan, 93(1): 5-48.
[4]Robert A, 1982.A semi-Lagrangian and semi-implicit numerical integration scheme for the primitive meteorological equations[J].Journal of the Meteorological Society of Japan, 60: 319-325.
[5]Simmonds I, Bi D, Hope P, 1999.Atmospheric water vapor flux and its association with rainfall over China in summer[J].Journal of Climate, 12: 1353-1367.
[6]Zhai P M, Eskridge R E, 1997.Atmospheric water vapor over China[J].Journal of Climate, 10(10): 2643–2652.
[7]常姝婷, 刘玉芝, 华珊, 等, 2019.全球变暖背景下青藏高原夏季大气中水汽含量的变化特征[J].高原气象, 38(2): 227-236.DOI: 10.7522/j.issn.1000-0534.2018.00080.
[8]丁一汇, 胡国权, 2003.1998年中国大洪水时期的水汽收支研究[J].气象学报, 61(2): 129-145.
[9]顾薇, 2016.夏季热带西太平洋海温对厄尔尼诺发展阶段我国东部汛期降水的影响分析[J].气象, 42(5): 548-556.
[10]顾伟宗, 伯忠凯, 杨成芳, 等, 2018.2017年山东夏季降水特征及预测初探[J].海洋气象学报, 38(3): 111-117.
[11]顾伟宗, 张莉, 王辉, 2012.气候变化背景下山东盛夏降水异常成因及预测研究[J].中国海洋大学学报, 42(12): 8-31.
[12]胡桂芳, 2011.山东夏季降水分布型及与全国雨型的关系[J].山东气象, 31(1): 1-4.
[13]黄荣辉, 张振洲, 黄刚, 等, 1998.夏季东亚季风区水汽输送特征及其与南亚季风区水汽输送的差别[J].大气科学, 22(4): 460-469.
[14]李进, 李栋梁, 张杰, 2012.黄河流域夏季有效降水转化率[J].水科学进展, 23(3): 346-354.
[15]梁萍, 何金海, 陈隆勋, 等, 2007.华北夏季强降水的水汽来源[J].高原气象, 26(3): 460-465.
[16]刘艳华, 李铁林, 马鑫鑫, 等, 2011.河南省空中水汽资源的来源、 分布及收支[J].气象与环境科学, 34(4): 27-42.
[17]刘菊菊, 游庆龙, 王楠, 2019.青藏高原夏季云水含量及其水汽输送年际异常分析[J].高原气象, 38(3): 449-459.DOI: 10. 7522/j.issn.1000-0534.2018.00138.
[18]李霞, 张广兴, 2003.天山可降水量和降水转化率的研究[J].中国沙漠, 23(5): 509-513.
[19]孟祥新, 王娜, 商林, 2017.海温异常对山东夏季降水的影响分析[J].气象, 43(10): 1259-1266.
[20]钱正安, 蔡英, 宋敏红, 等, 2018.中国西北旱区暴雨水汽输送研究进展[J].高原气象, 37(3): 577-590.DOI: 10.7522/j.issn. 1000-0534.2018.00032.
[21]史玉光, 孙照渤, 2008a.新疆大气可降水量的气候特征及其变化[J].中国沙漠, 28(3): 519-525.
[22]史玉光, 孙照渤, 2008b.新疆水汽输送的气候特征及其变化[J].高原气象, 27(2): 310-319.
[23]任宏利, 张培群, 李维京, 等, 2004.中国西北东部地区春季降水及其水汽输送特征[J].气象学报, 62(3): 365-374.
[24]魏凤英, 2007.现代气候统计诊断与预测研究[M].2版.北京: 气象出版社.
[25]王慧清, 付亚男, 包福祥, 等, 2018.内蒙古地区多年大气可降水量及其转化效率研究[J].高原气象, 37(3): 786-795.DOI: 10. 7522/j.issn.1000-0534.2017.00077.
[26]王娜, 顾伟宗, 孟祥新, 2019.山东夏季降水年际优势模态及对应大气环流特征[J].气象, 45(1): 99-112.
[27]王维佳, 赵兴炳, 2010.川西高原地基GPS遥测可降水量特征[J].干旱气象, 28(3): 279-284.
[28]杨红梅, 葛润生, 徐宝祥, 1998.用单站探空资料分析对流层气柱水汽总量[J].气象, 24(9): 8-11.
[29]朱飙, 张强, 卢国阳, 等, 2019.祁连山区空中水汽分布特征及变化趋势分析[J].高原气象, 38(5): 935-943.DOI: 10.7522/j.issn.1000-0534.2019.00047.
[30]朱丽, 刘蓉, 王欣, 等, 2019.基于FLEXPART模式对黄河源区盛夏降水异常的水汽源地及输送特征研究[J].高原气象, 38(3): 484-496.DOI: 10.7522/j.issn.1000-0534.2019.00015.