结合WWLLN闪电定位资料、 子午工程海口站激光雷达所测的中性金属钠原子密度数据, 利用SEA时序叠加法对对流层雷暴活动与中间层及低热层(MLT)金属钠(Na)原子变化进行了分析, 探究了金属钠原子层对雷暴活动的响应及变化特征。研究表明: 在雷暴日, MLT区域Na原子在距地面90~95 km处的密度小于非雷暴日的值; 利用总雷暴活动触发下的SEA统计得到, Na原子密度在触发后的24 h内出现了明显的减弱, 在触发前则有微弱的增强; 触发前Na原子密度的增强与闪电活动的发生距离和方位有关; 在东北方高密度闪电活动的触发下, Na原子密度在距地面85~93 km的范围内、 触发点前 -12~0 h显著增强; Na原子密度峰值在91 km和87 km处的相对增强幅度最高, 在96 km之上的高度未发现明显的峰值; Na原子柱密度分布特征在闪电触发前-12~0 h与其后0~24 h与之前-24~-12 h存在显著差异, 最高相对变化量为36.1%。研究结果表明低纬上空MLT区的Na原子密度的变化应考虑雷暴电场及闪电活动的影响因素。
The thunderstorm activities in tropospheric and metal Na layer in Mesosphere and Lower thermosphere (MLT) area were analyzed using superposed epoch analysis (SEA), combined with the lightning location data of WWLLN and Na density data of the radar metal of Haikou station.The response and variation characteristics of Na atoms density were analyzed under the trigger of lightning activities.The results are showed as following.(1) The density of Na atoms of the thunderstorm day in MLT region within 90~95 km above the ground was smaller than that of non-thunderstorm one.(2) Before and after the trigger time, the Na atoms density presented different activities.Using the SEA under the trigger of total lightning activities during the thunderstorm processes, density of Na atoms was decreasing obviously within 24 h after the trigger time, while it had only a bit augment before trigger.It had relation with the distance and position of lightning activities away from the station.(3) Under the control trigger of northeast lightning activities, density of Na atoms presented significantly enhancement.The density enhancement of Na atom occurred about -12~0 h before the trigger time, and it ranged from 85 km to 93 km above ground.The maximum of variation ratio of enhancement was at 87 km, and the peak of Na atoms density was at 91 km.Above the 96 km, there had no obvious augment in density.(4) The column density and median density of Na atoms presented obviously difference during the epoch -12~0 h with the epoch 0~24 h and epoch -24~-12 h.The Maximum of variation ratio was 36.1%.The results show that the factor of thunderstorm electric field or lightning activities should be considered for the change of Na atoms density in MLT region of low latitude.
[1]Barta V, Scotto C, Pietrella M, et al, 2013.A statistical analysis on the relationship between thunderstorms and the sporadic E Layer over Rome[J].Astronomische Nachrichten, 334(9): 968-971.DOI: 10.1002/asna.201211972.
[2]Barta V, Pietrella M, Scotto C, et al, 2015.Thunderstorm-related variations in the sporadic E layer around Rome[J].Acta Geodaetica Et Geophysica, 50(3): 1-10.DOI: 10.1007/s40328-015-0098-4.
[3]Davis C J, Johnson C G, 2015.Lightning-induced intensification of the ionospheric sporadic E layer[J].Nature, 435(7043): 799-801.DOI: 10.1038/nature03638.
[4]Lay E H, 2018.Ionospheric irregularities and acoustic/gravity wave activity above low-latitude thunderstorms[J].Geophysical Research Letters, 45(8): 90-97.DOI: 10.1002/2017GL076058.
[5]Francis S H, 1975.Global propagation of atmospheric gravity waves-A review[J].Journal of Atmospheric and Terrestrial Physics, 37: 1011-1054.DOI: 10.1016/0021-9169(75)90012-4.
[6]Irfan A, Walterscheid R L, Geoff C, 2018.Investigation of acoustic waves in the ionosphere generated by a deep convection system using distributed networks of GPS receivers and numerical modeling[J].Geophysical Research Letters, 45(16): 8014-8021.DOI: 10.1029/2018GL078107.
[7]Kelley M C, Ding J G, Holzworth R H, 1990.Intense ionospheric electric and magnetic field pulses generated by lightning[J].Geophysical Research Letters 17: 2221-2224.DOI: 10.1029/GL017i012p02221.
[8]Kumar V V, Parkinson M L, Dyson P L, et al, 2009.The effects of thunderstorm-generated atmospheric gravity waves on mid-latitude F-region drifts[J].Journal of Atmospheric and Solar-Terrestrial Physics, 71(17/18): 1904-1915.DOI: 10.1016/j.jastp. 2009.07.006.
[9]Kumar S, Chen W, Chen M L, et al, 2017.Thunderstorm‐/lightning‐induced ionospheric perturbation: An observation from equatorial and low‐latitude stations around Hong Kong[J].Journal of Geophysical Research Space Physics, 122(8): 9032-9044.DOI: 10.1002/2017JA023914.
[10]Liu X, Yue J, Xu J Y, et al, 2017.Variations of global gravity waves derived from 14 years of SABER temperature observations[J].Journal of Geophysical Research: Atmospheres, 122(12): 6231-6249.DOI: 10.1002/2017JD026604.
[11]Friedman J S, Gonz′alez S A, Tepley C A, et al, 1999.Sulzer.Simultaneous atomic and ion layer enhancements observed in the mesopause region over Arecibo during the Coqui II Sounding Rocket Campaign[J].Geophysical Research Letters, 27(4): 449-452.DOI: 10.1029/1999gl900605.
[12]Kane T J, Gardner C S, 1999.Lidar observations of the meteoric deposition of mesospheric metals[J].Science, 259(5099): 1297-1300.DOI: 10.1126/science.259.5099.1297.
[13]Rodger C J, Werner S W, Brundell J B, et al, 2006.Detection efficiency of the VLF World-Wide Lightning Location Network (WWLLN): Initial case study[J].Annales Geophysicae, 24(12): 3197-3214.DOI: 10.5194/angeo-24-3197-2006.
[14]Rycroft M J, 2006.Electrical processes coupling the atmosphere and ionosphere: An overview[J].Journal of Atmospheric and Solar-Terrestrial Physics, 68: 445-456.DOI: 10.1016/j.jastp.2005. 04.009.
[15]Shao X M, Lay E H, Jacobson A R, 2012.Reduction of electron density in the night-time lower ionosphere in response to a thunderstorm[J].Nature Geoscience, 6(1): 29-33.DOI: 10.1038/ngeo1668.
[16]Sentman D D, Wescott E M, Picard R H, et al, 2003.Simultaneous observations of mesospheric gravity waves and sprites generated by a midwestern thunderstorm[J].Journal of Atmospheric and Solar-Terrestrial Physics, 65(5): 537-550.DOI: 10.1016/s1364-6826(02)00328-0.
[17]Suzuki S, Shiokawa K, Otsuka Y, et al, 2007.A concentric gravity wave structure in the mesospheric airglow images[J].Journal of Geophysical Research: Atmospheres, 112: D02102.DOI: 10. 1029/2005JD006558.
[18]Waldock J A, 1996.Wind and temperature effects on F-region medium-scale gravity waves estimated using a multi-layer atmospheric model[J].Journal of Atmospheric and Terrestrial Physics, 58(11): 1259-1273.DOI: 10.1016/0021-9169(95)00144-1.
[19]Yu B K, Xue X H, Lu G P, et al, 2015.Evidence for lightning-associated enhancement of the ionospheric sporadic E layer dependent on lightning stroke energy[J].Journal of Geophysical Research Space Physics, 120(10): 9202-9212.DOI: 10.1002/2015JA021575.
[20]Yu B K, Xue X H, Lu G P, et al, 2017.The enhancement of neutral metal Na layer above thunderstorms[J].Geophysical Research Letters, 44(19): 9555-9563.DOI: 10.1002/2017GL074977.
[21]Zhou Q H, John D, Mathews, 1995.Generation of sporadic sodium layers via turbulent heating of the atmosphere[J].Journal of Atmospheric and Terrestrial Physics, 57: 1309-1320.DOI: 10. 1016/0021-9169(95)97298-i.
[22]郭凤霞, 王曼霏, 黄兆楚, 等, 2018.青藏高原雷暴电荷结构特征及成因的数值模拟研究[J].高原气象, 37(4): 911-922.DOI: 10.7522/j.issn.1000-0534.2018.00002.
[23]潘伦湘, 郄秀书, 刘冬霞, 等, 2010.西北太平洋地区强台风的闪电活动特征[J].中国科学(地球科学), 40(2): 252-260.DOI: 10.1360/zd2010-40-2-252.
[24]邱世灿, 2014.中高层大气突发钠层的区域性特征及机制研究[D].合肥: 中国科学技术大学.
[25]王梦旖, 谭涌波, 师正, 等, 2019.大气冰核谱对雷暴云微物理过程及起电影响的数值模拟[J].高原气象, 38(3): 593-603.DOI: 10.7522/j.issn.1000-0534.2019.00013.
[26]温颖, 张其林, 徐寄遥, 等, 2019.雷暴激发的环状重力波在中高层大气中的传播特征[J].地球物理学报, 62(4): 32-43.DOI: 10.6038/cjg2019M0186.
[27]武智君, 郄秀书, 王东方, 等, 2016.基于多站电场变化同步测量的负地闪回击中和电荷源特征[J].高原气象, 35(4): 1123-1134.DOI: 10.7522/j.issn.1000-0534.2015.00070.
[28]辛雪琪, 赵阳, 田建兵, 等, 2019.青藏高原东部地区雷暴及其地闪活动特征分析[J].科学技术与工程, 19(18): 47-57.
[29]张义军, 张阳, 2016.雷暴闪电放电活动对电离层影响的研究进展[J].应用气象学报, 27(5): 570-576.DOI: 10.11898/1001-7313.20160506.
[30]朱平, 俞小鼎, 2019.青藏高原东北部一次罕见强对流天气的中小尺度系统特征分析[J].高原气象, 38(1): 1-13.DOI: 10. 7522/j.issn.1000-0534.2018.00070.