论文

青藏高原腹地多年冻土区活动层水热过程对气候变化的响应

  • 徐洪亮 ,
  • 常娟 ,
  • 郭林茂 ,
  • 孙文军
展开
  • 兰州大学 资源环境学院,甘肃 兰州 730000

收稿日期: 2020-05-15

  网络出版日期: 2021-04-28

基金资助

国家自然科学基金项目(41671015)

Response of Thermal-Moisture Condition within Active Layer in the Hinterland of the Qinghai-Xizang Plateau to Climate Change

  • Hongliang XU ,
  • Juan CHANG ,
  • Linmao GUO ,
  • Wenjun SUN
Expand
  • College of Earth and Environmental Sciences,Lanzhou University,Lanzhou 730000,Gansu,China

Received date: 2020-05-15

  Online published: 2021-04-28

摘要

活动层作为多年冻土与大气系统之间能量和水分交换通道, 其内部的水热状况是控制水循环和地表能量平衡的主要因素, 并直接影响着寒区生态环境、 水文过程以及多年冻土的稳定性。利用一维水热耦合模型CoupModel, 对青藏高原风火山试验点活动层土壤剖面温湿度进行了模拟。模拟效率参数表明模拟结果很好地反映了研究区多年冻土活动层水热状况。基于已验证的模型, 设置多种不同气候变化情形, 来分析活动层内部水热状况对全球气候变化的响应。研究结果表明: (1)土壤温度与气温呈正相关关系, 气温每升高1 ℃活动层平均增温约0.78 ℃, 但随着土壤深度增加, 增温幅度逐渐减小; (2)升温导致活动层土壤冻结和融化过程发生变化, 且对融化过程的影响明显大于冻结过程; (3)活动层各深度土壤含水量随气温升高而增大, 且增大幅度随土壤深度增加而不断增大; (4)在完全融化期, 降水量增加降低了浅层土壤温度, 升高了深层土壤温度, 而完全冻结期土壤温度均随降水量增加而升高; (5)降水量增加导致活动层含水量增加, 其中完全融化期土壤含水量变化最明显。因此, 气候暖湿化将对青藏高原多年冻土区活动层土壤温湿度及冻融循环过程产生较大影响, 可能不利于冻土发育。

本文引用格式

徐洪亮 , 常娟 , 郭林茂 , 孙文军 . 青藏高原腹地多年冻土区活动层水热过程对气候变化的响应[J]. 高原气象, 2021 , 40(2) : 229 -243 . DOI: 10.7522/j.issn.1000-0534.2020.00071

Abstract

As the energy-water exchange channel between permafrost-atmosphere system, the thermal-moisture conditions of the active layer are the main factors that control the hydrological cycle and surface energy balance, and directly affect the ecological environment, hydrological processes and stability of the permafrost in cold regions.The temperature and moisture contents within the active layer at Fenghuoshan station were simulated by one-dimensional water-heat coupling model CoupModel.The simulation efficiency parameters showed that the simulation results well reflected the thermal-moisture conditions of the active layer of permafrost in the study area.Based on the verified model, a variety of different climate change scenarios were set to analyze the response of the thermal-moisture conditions in the active layer to global climate change.Results showed that: (1) There was a positive correlation between soil temperature and air temperature, and the average temperature of active layer increased by about 0.78 ℃ for every 1 ℃ increment of air temperature, but the increment of soil temperature decreased as the soil depth increased; (2) The rising air temperature caused changes in the process of freezing and thawing of the active layer, and the impact by the latter is significantly greater than the former; (3) As the temperature rises, the soil water content at each depth of the active layer increased, and the increment increased with the increase of soil depth; (4) During the complete melted period, the increase in precipitation reduced the temperature of the shallow soil, but increased the temperature of the deep soil, while the temperature of each soil layer during the complete frozen period increased with the increase in precipitation; (5) The increase in precipitation caused an increase in the water content of the active layer, with the most obvious change in soil water content during the complete melted period.Therefore, climate warming and wetting will have a greater impact on the soil temperature and moisture of the active layer and the freezing-thawing cycles process in the permafrost regions of the Qinghai-Xizang Plateau, which may not be conducive to the development of frozen soil.

参考文献

[1]Cheng G D, Wu T H, 2007.Responses of permafrost to climate change and their environmental significance, Qinghai‐Tibet Plateau[J].Journal of Geophysical Research, 112, F02S03, DOI: 10.1029/2006JF000631.
[2]Hu G J, Zhao L, Li R, et al, 2019.Variations in soil temperature from 1980 to 2015 in permafrost regions on the Qinghai‐Tibetan Plateau based on observed and reanalysis products[J].Geoderma, 337: 893-905.
[3]Jansson P E, 2012.CoupModel: Model use, calibration, and validation[J].Transactions of the Asabe, 55(4): 1337-1346.
[4]Jansson P E, Karlberg L, 2010.土壤-植物-大气系统热量、 物质运移综合模型理论与实践[M]//张洪江, 程金花, 王 伟, 等, 译.北京: 科学出版社, 1-80.
[5]Jin H J, Luo D L, Wang S L, et al, 2011.Spatiotemporal variability of permafrost degradation on the Qinghai‐Tibet Plateau[J].Sciences in Cold and Arid Regions, 3(4): 281-305.
[6]Jansson P E, Moon D S, 2001.A coupled model of water, heat and mass transfer using object orientation to improve flexibility and functionality[J].Environmental Modelling and Software, 16(1): 37-46.
[7]Jorgenson M T, Racine, C H, Walters J C, et al, 2001.Permafrost degradation and ecological changes associated with a warming in central Alaska[J].Climatic Change, 48(4): 551‐579.
[8]Kokfelt U, ROSéN P, Schoning K, et al, 2010.Ecosystem responses to increased precipitation and permafrost decay in subarctic Sweden inferred from peat and lake sediments[J].Global Change Biology, 15(7): 1652-1663.
[9]Li X, Cheng G D, Jin H J, et al, 2008.Cryospheric change in China[J].Global and Planetary Change, 62(3/4): 210-218.
[10]Okkonen J, Klove B, 2011.A sequential modelling approach to assess groundwater‐surface water resources in a snow dominated region of Finland[J].Journal of Hydrology, 411(1/2): 91-107.
[11]Pang Q Q, Cheng G D, Li S X, et al, 2009.Active layer thickness calculation over the Qinghai‐Tibet Plateau[J].Cold Regions Science and Technology, 57(1): 23-28.
[12]Pang Q Q, Zhao L, Li S X, et al, 2012.Active layer thickness variations on the Qinghai‐Tibet Plateau under the scenarios of climate change[J].Environmental Earth Sciences, 66(3): 849-857.
[13]Rasmussen L H, Zhang W X, Hollesen J, et al, 2018.Modelling present and future permafrost thermal regimes in Northeast Greenland[J].Cold Regions Science and Technology, 146: 199-213.
[14]Rouse W R, 2000.Progress in hydrological research in the Mackenzie GEWEX study[J].Hydrological Processes, 14(9): 1667-1685.
[15]Turetsky M R, Wieder R K, Vitt D H, 2002.Boreal peatland C fluxes under varying permafrost regimes[J].Soil Biology and Biochemistry, 34(7): 907-912.
[16]Wang G X, Hu H C, Liu G S, et al, 2009b.Impacts of changes in vegetation cover on soil water heat coupling in an alpine meadow, Qinghai‐Tibet Plateau, China[J].Hydrology and Earth System Sciences, 5(4): 2543-2579.
[17]Wang G X, Li S N, Hu H C, et al, 2009a.Water regime shifts in the active soil layer of the Qinghai‐Tibet Plateau permafrost region, under different levels of vegetation[J].Geoderma, 149(3/4): 280-289.
[18]Wang J F, Wu Q B, 2013.Impact of experimental warming on soil temperature and moisture of the shallow active layer of wet meadows on the Qinghai‐Tibet Plateau[J].Cold Regions Science and Technology, 90/91: 1-8.
[19]Wen Z, Niu F J, Yu Q H, et al, 2014.The role of rainfall in the thermal‐moisture dynamics of the active layer at Beiluhe of Qinghai‐Tibetan plateau[J].Environmental Earth Sciences, 71(3): 1195-1204.
[20]Wen Z, Zhang M L, Ma W, et al, 2015.Thermal‐moisture dynamics of embankments with asphalt pavement in permafrost regions of central Tibetan Plateau[J].European Journal of Environmental and Civil Engineering, 19(4): 387-399.
[21]Wu T H, Qin Y H, Wu X D, et al, 2017.Spatiotemporal changes of freezing thawing indices and their response to recent climate change on the Qinghai‐Tibet Plateau from 1980 to 2013[J].Theoretical and Applied Climatology, 132(3/4): 1187-1199.
[22]Yang M X, Yao T D, Gou X H, et al, 2007.Comparison analysis of the summer monsoon precipitation between northern and southern slopes of Tanggula Mountains, Qinghai‐Xizang (Tibetan) Plateau: A case study in summer 1998[J].Hydrological Processes, 21(14): 1841-1847.
[23]Yang M X, Yao T D, Gou X H, et al, 2008.Precipitation distribution along the Qinghai‐Xizang (Tibetan) highway, summer 1998[J].Arctic Antarctic and Alpine Research, 40(4): 761-769.
[24]Zhang Y S, Ohata T, Kadota T, 2003.Land‐surface hydrological processes in the permafrost region of the eastern Tibetan Plateau[J].Journal of Hydrology, 283(1/4): 41-56.
[25]Zou D F, Zhao L, Sheng Y, et al, 2017.A new map of permafrost distribution on the Tibetan Plateau[J].The Cryosphere, 11(6): 2527-2542.
[26]程国栋, 赵林, 2000.青藏高原开发中的冻土问题[J].第四纪研究, 20(6): 521-531.
[27]杜军, 2001.西藏高原近40年的气温变化[J].地理学报, 56(6): 682-690.
[28]付强, 侯仁杰, 李天霄, 等, 2016.冻融土壤水热迁移与作用机理研究[J].农业机械学报, 47(12): 99-110.
[29]郭林茂, 常娟, 徐洪亮, 等, 2020.基于BP神经网络和FEFLOW模型模拟预测多年冻土活动层温度——以青藏高原风火山地区为例[J].冰川冻土, 42(2): 399-411.
[30]韩熠哲, 马伟强, 王炳赟, 等, 2017.青藏高原近30年降水变化特征分析[J].高原气象, 36(6): 1477-1486.DOI: 10.7522/j.issn.1000-0534.2016.00125.
[31]胡国杰, 赵林, 李韧, 等, 2013.基于COUPMODEL模型的冻融土壤水热耦合模拟研究[J].地理科学, 33(3): 356-362.
[32]蒋观利, 吴青柏, 张中琼, 2018.青藏高原不同高寒生态系统类型下多年冻土活动层水热过程差异研究[J].冰川冻土, 40(1): 7-17.
[33]焦永亮, 李韧, 赵林, 等, 2014.多年冻土区活动层冻融状况及土壤水分运移特征[J].冰川冻土, 36(2): 237-247.
[34]金会军, 王绍令, 吕兰芝, 等, 2010.黄河源区冻土特征及退化趋势[J].冰川冻土, 32(1): 10-17.
[35]李德生, 温智, 张明礼, 等, 2017.降水对多年冻土活动层水热影响定量分析[J].干旱区资源与环境, 31(7): 108-113.
[36]李韧, 赵林, 丁永建, 等, 2011.地表能量变化对多年冻土活动层融化过程的影响[J].冰川冻土, 33(6): 1235-1242.
[37]李韧, 赵林, 丁永建, 等, 2012.青藏公路沿线多年冻土区活动层动态变化及区域差异特征[J].科学通报, 57(30): 2864-2871.
[38]梁四海, 万力, 方斌, 2007.加强长江源区生态建设实现西部开发可持续发展[J].中国科技论坛, 4: 70-73+89.
[39]刘光生, 2009.长江源多年冻土区沼泽及高寒草甸水热过程及其对气候变化的响应[D].兰州: 兰州大学.
[40]刘光生, 王根绪, 白炜, 等, 2012.青藏高原沼泽草甸活动层土壤热状况对增温的响应[J].冰川冻土, 34(3): 555-562.
[41]刘桂芳, 卢鹤立, 2010.1961~2005年来青藏高原主要气候因子的基本特征[J].地理研究, 29(12): 2281-2288.
[42]路茜, 2017.气候变化对青藏高原表层土壤水分时空格局的影响研究[D].兰州: 甘肃农业大学.
[43]马转转, 张明军, 王圣杰, 等, 2019.1960 -2015年青藏高寒区与西北干旱区升温特征及差异[J].高原气象, 38(1): 42-54.DOI: 10.7522/j.issn.1000-0534.2018.00074.
[44]秦艳慧, 吴通华, 李韧, 等, 2018.基于GIPL2模型的青藏高原活动层土壤热状况模拟研究[J].冰川冻土, 40(6): 1153-1166.
[45]谭春萍, 杨建平, 米睿, 2010.1971 -2007年青藏高原南部气候变化特征分析[J].冰川冻土, 32(6): 1111-1120.
[46]王绍令, 赵新民, 1999.青藏高原多年冻土区地温监测结果分析[J].冰川冻土, 21(2): 159-163.
[47]徐丽娇, 胡泽勇, 赵亚楠, 等, 2019.1961 -2010年青藏高原气候变化特征分析[J].高原气象, 38(5): 911-919.DOI: 10.7522/j.issn.1000-0534.2018.00137.
[48]徐学祖, 王家澄, 张立新, 2001.冻土物理学[M].北京: 科学出版社, 1-17.
[49]许建伟, 高艳红, 彭保发, 等, 2020.1979 -2016年青藏高原降水的变化特征及成因分析[J].高原气象, 39(2): 234-244.DOI: 10.7522/j.issn.1000-0534.2019.00029.
[50]阳勇, 陈仁升, 吉喜斌, 等, 2010.黑河高山草甸冻土带水热传输过程[J].水科学进展, 21(1): 30-35.
[51]阳勇, 陈仁升, 叶柏生, 等, 2013.寒区典型下垫面冻土水热过程对比研究(Ⅰ): 模型对比[J].冰川冻土, 35(6): 1545-1554.
[52]姚闯, 吕世华, 王婷, 等, 2019.黄河源区多、 少雪年土壤冻融特征分析[J].高原气象, 38(3): 474-483.DOI: 10.7522/j.issn. 1000-0534.2018.00142.
[53]袁九毅, 闫水玉, 赵秀锋, 等, 1997.唐古拉山南麓多年冻土退化与嵩草草甸变化的关系[J].冰川冻土, 19(1): 47-51.
[54]张明礼, 温智, 董建华, 等, 2017.降雨增加对多年冻土区铁路路基水热影响研究[J].岩石力学与工程学报, 36(10): 2580-2590.
[55]张明礼, 温智, 董建华, 等, 2019.考虑降雨作用的气温升高对多年冻土活动层水热影响机制[J].岩土力学, 40(5): 1983-1992.
[56]张明礼, 温智, 薛珂, 2015.北麓河多年冻土活动层水热迁移规律分析[J].干旱区资源与环境, 29(9): 176-181.
[57]张明礼, 温智, 薛珂, 等, 2016.降水对北麓河地区多年冻土活动层水热影响分析[J].干旱区资源与环境, 30(4): 159-164.
[58]张伟, 王根绪, 周剑, 等, 2012.基于CoupModel的青藏高原多年冻土区土壤水热过程模拟[J].冰川冻土, 34(5): 1099-1109.
[59]张伟, 周剑, 王根绪, 等, 2013.积雪和有机质土对青藏高原冻土活动层的影响[J].冰川冻土, 35(3): 528-540.
[60]张中琼, 吴青柏, 2012.气候变化情景下青藏高原多年冻土活动层厚度变化预测[J].冰川冻土, 34(3): 505-511.
[61]张中琼, 吴青柏, 张泽, 等, 2012.气候变暖情景下青藏高原多年冻土地温变化分析[J].工程地质学报, 20: 610-613.
[62]赵军, 2001.COUPMODEL模拟土壤水热变化过程的研究[J].农业系统科学与综合研究, 17(4): 250-252.
[63]赵林, 胡国杰, 邹德富, 等, 2019.青藏高原多年冻土变化对水文过程的影响[J].中国科学院院刊, 34(11): 1233-1246.
[64]周剑, 王根绪, 李新, 等, 2008.高寒冻土地区草甸草地生态系统的能量-水分平衡分析[J].冰川冻土, 30(3): 398-407.
[65]周刊社, 陈华, 卓嘎, 2015.近43年西藏高原20 cm地温对气温和降水变化的响应[J].中国农学通报, 31(35): 209-216.
[66]朱兆荣, 李勇, 薛春晓, 等, 2011.1976 -2010年青藏铁路沿线多年冻土区降水变化特征[J].冰川冻土, 33(4): 846-850.
文章导航

/