利用NCEP1再分析的逐日、 逐月位势高度、 海平面气压、 风、 温度、 相对湿度资料与中国地面气候资料日值数据集(3.0)降水资料, 分析了新疆北部2010年1 -2月连续5次降雪过程以及蒙古高压和极涡对其的影响。结果表明: 在充沛水汽条件下蒙古高压强而连续的爆发是导致2010年降雪极端异常的重要原因。该年蒙古高压平均强度为历年最强, 在此次持续性过程中, 存在5次蒙古高压的南北移动和5次蒙古高压强度与面积的振荡。且每一次降雪、 降温过程前基本都存在蒙古高压南进、 面积增大、 强度增强。蒙古高压中心纬度超前新疆日平均温度1~3天的相关和蒙古高压强度和面积指数超前新疆北部日平均温度1~4天的相关均显著。研究极涡与蒙古高压二者关系发现, 前期对流层高层极涡增强、 极涡中心北移, 有利于后期的蒙古高压增强增大且中心南移。
Based on the NCEP1 reanalysis of daily, monthly geopotential height, sea level pressure, wind, temperature, relative humidity data and daily precipitation data of China's surface climate data multi-day data set V3.0(SURF_CLI_CHN_MUL_DAY), the mid-term synoptic process characteristics of the 5 continuous snowfall episodes in northern Xinjiang province during January to February in 2010 and the influences of the surface Mongolian high pressure and the upper troposphere polar vortex on them are analyzed.The results show that the strong and continuous outbreak of Mongolian high pressure under abundant water vapor conditions is an important cause of extreme snowfall in 2010.In this year, the average intensity of Mongolian high pressure was the strongest in the historical data.During this continuous snowfall processes, there were 5 times north-south direction movements of the surface Mongolian high pressure’s center and 5 times oscillations of its intensity and area.In addition, before each snowfall and cooling process, the center of Mongolian high pressure at surface moved southward, and the area of Mongolian high pressure expanded and the intensity of Mongolian high pressure increased.Lead/lag correlation between the latitude of the surface Mongolian high pressure center and the daily average temperature of Xinjiang area is significant, and the number of days of leading is 1~3 days.Lead/lag correlation between the intensity of the surface Mongolian high pressure and the daily average temperature of Xinjiang area is significant, the number of days of leading is 1~3 days.Lead/lag correlation between the area of the surface Mongolian high pressure and the daily average temperature of Xinjiang area is significant as well, and the number of days of leading is 1~4 days.The article also selects the years of abnormal large snowfall in the historical records to study the lead-lag correlation between the upper troposphere polar vortex circulation index and the surface Mongolian high pressure circulation index, study found that the characteristics of the multi-year synthesis results are basically similar to the exceptional year 2010.The synthesis results further verify the correlation between the surface Mongolian high pressure and the upper troposphere polar vortex, that is, the enhancement of the intensity and the northward movement of the center of polar vortex at the upper troposphere in the early stage, which was conducive to the enhancement of the intensity, the expansion of the area and the northward movement of the center of the Mongolian high pressure at surface in the later stage.
[1]Angell J K, 2006.Changes in the 300-mb North Circumpolar Vortex, 1963-2001[J].Journal of Climate, 19(12): 2984-2994.
[2]Bueh C, Shi N, Xie Z, 2011.Large‐scale circulation anomalies associated with persistent low temperature over Southern China in January 2008[J].Atmospheric Science Letters, 12(3): 273-280.
[3]Cohen J, Screen J A, Furtado J C, et al, 2014.Recent Arctic amplification and extreme mid-latitude weather[J].Nature Geoscience, 7(9): 627-637.
[4]Frauenfeld O W, Davis R E, 2003.Northern Hemisphere circumpolar vortex trends and climate change implications[J].Journal of Geophysical Research, 108(D14): 4423-4435.
[5]Gardner A S, Sharp M, 2007.Influence of the Arctic circumpolar vortex on the mass balance of Canadian High Arctic glaciers[J].Journal of Climate, 20: 4586-4599.
[6]Garfinkel C I, Hartmann D L, Sassi F, 2010.Tropospheric precursors of anomalous northern hemisphere stratospheric polar vortices[J].Journal of Climate, 23: 3282-3299.
[7]Graf H F, Zanchettin D, Timmreck C, et al, 2014.Observational constraints on the tropospheric and near-surface winter signature of the Northern Hemisphere stratospheric polar vortex[J].Climate Dynamics, 43(12): 3245-3266.
[8]Kashki A, Khoshhal J, 2013.Investigation of the role of polar vortex in Iranian first and last snowfalls[J].Journal of Geography and Geology, 5: 161-168.
[9]Kim B M, Son S W, Min S K, et al, 2014.Weakening of the stratospheric polar vortex by Arctic sea-ice loss[J].Nature Communications, 5: 4646.
[10]Kelleher M, Screen J, 2018.Atmospheric precursors of and response to anomalous Arctic sea ice in CMIP5 models[J].Advances in Atmospheric Sciences, 35(1): 27-37.
[11]Peings Y, Magnusdottir G, 2014.Response of the wintertime northern hemisphere atmospheric circulation to current and projected Arctic Sea ice decline: A numerical study with CAM5[J].Journal of Climate, 27(1): 244-264.
[12]Sanders F, Bosart L F, 1985.Mesoscale structure in the megalopolitan snowstorm of 11-12 february 1983.Part I: Frontogenetical forcing and symmetric instability[J].Journal of the Atmospheric Sciences, 42(10): 1050-1061.
[13]Sun J Q, Wang H J, Yuan W, et al, 2010.Spatial-temporal features of intense snowfall events in China and their possible change[J].Journal of Geophysical Research, 115(D16): D16110.
[14]Sun X J, Wang P X, Wang J X L, 2017.An assessment of the atmospheric centers of action in the northern hemisphere winter[J].Climate Dynamics, 48(3/4): 1031-1047.
[15]Wang H J, Yu E T, Yang S, 2011.An exceptionally heavy snowfall in Northeast China: Large-scale circulation anomalies and hindcast of the NCAR WRF model[J].Meteorology and Atmospheric Physics, 113(1/2): 11-25.
[16]Waugh D W, Sobel A H, Polvani L M, 2016.What is the polar vortex and how does it influence weather?[J].Bulletin of the American Meteorological Society, 98(1): 37-44.
[17]Wu Z W, Li J P, Jiang Z H, et al, 2011.Predictable climate dynamics of abnormal East Asian winter monsoon: Once-in-a-century snow storms in 2007/2008 winter[J].Climate Dynamics, 37(7/8): 1661-1669.
[18]Zhou B T, Wang Z Y, Shi Y, et al, 2018.Historical and future changes of snowfall events in China under a warming background[J].Journal of Climate, 31(15): 5873-5889.
[19]Zhang P F, Wu Y T, Simpson I R, et al, 2018.A stratospheric pathway linking a colder Siberia to Barents-Kara Sea sea ice loss[J].Science Advances, 4(7): 6025-6032.
[20]布和朝鲁, 彭京备, 谢作威, 等, 2018.冬季大范围持续性极端低温事件与欧亚大陆大型斜脊斜槽系统研究进展[J].大气科学, 42(3): 656-676.
[21]布和朝鲁, 纪立人, 施宁, 2008.2008年初我国南方雨雪低温天气的中期过程分析, Ⅰ: 亚非副热带急流低频波[J].气候与环境研究, 13(4): 86-100.
[22]崔彩霞, 杨青, 王胜利, 2005.1960 -2003年新疆山区与平原积雪长期变化的对比分析[J].冰川冻土, 27(4): 486-490.
[23]陈涛, 崔彩霞, 2012.“2010·1·6”新疆北部特大暴雪过程中的锋面结构及降水机制[J].气象, 38(8): 921-931.
[24]陈海山, 罗江珊, 韩方红, 2019.中国北方暴雪的年代际变化及其与大气环流和北极海冰的联系[J].大气科学学报, 42(1): 70-79.
[25]陈颖, 江远安, 毛炜峄, 等, 2011.气候变化背景下新疆北部2009/2010年冬季雪灾[J].气候变化研究进展, 7(2): 30-35.
[26]邓伟涛, 孙照渤, 2003.冬季北极涛动与极涡的变化分析[J].南京气象学学院, 26(1): 1-7.
[27]杜小玲, 高守亭, 彭芳, 2014.2011年初贵州持续低温雨雪冰冻天气成因研究[J].大气科学, 38(1): 61-72.
[28]管树轩, 王盘兴, 麻巨慧, 等, 2009.北半球10 hPa极地涡旋环流指数定义及分析[J].高原气象, 28(4): 777-785.
[29]龚道溢, 朱锦红, 王绍武, 2002.西伯利亚高压对亚洲大陆的气候影响分析[J].高原气象, 21(1): 8-21.
[30]龚道溢, 王绍武, 1999.西伯利亚高压的长期变化及全球变暖可能影响的研究[J].地理学报, 54(2): 125- 133.
[31]宫德吉, 李彰俊, 2001.内蒙古暴雪灾害的成因与减灾对策[J].气候与环境研究, 6(1): 132-138.
[32]郭其蕴, 1994.东亚冬季风的变化与中国气温异常的关系[J].应用气象学报, 5(2): 219- 225.
[33]黄海波, 徐海容, 2007.新疆一次秋季暴雪天气的诊断分析[J].高原气象, 26(3): 624-629.
[34]侯亚红, 杨修群, 李刚, 2007.冬季西伯利亚高压变化特征及其与中国气温的关系[J].气象科技, 35(5): 646- 650.
[35]姜俊玲, 魏鸣, 康浩, 等, 2010.2005年12月山东半岛暴雪成因及多尺度信息特征[J].大气科学学报, 33(3): 328-335.
[36]纪立人, 布和朝鲁, 施宁, 等, 2008.2008年初我国南方雨雪低温天气的中期过程分析, Ⅲ: 青藏高原-孟加拉湾气压槽[J].气候与环境研究, 13(4): 113-125.
[37]晋绿生, 赵俊荣, 田忠锋, 2010.2010年冬季新疆北部罕见连续性暖区大暴雪成因分析[C]//北京: 第27届中国气象学会年会灾害天气研究与预报分会场.
[38]李如琦, 唐冶, 肉孜·阿基, 2015.2010年新疆北部暴雪异常的环流和水汽特征分析[J].高原气象, 34(1): 155-162.DOI: 10. 7522 / j.issn.1000-0534.2013.00163.
[39]李崇银, 杨辉, 顾薇, 2008.中国南方雨雪冰冻异常天气原因的分析[J].气候与环境研究, 13(2): 113-122.
[40]李崇银, 程胜, 潘静, 2006.冬季北半球平流层季节内振荡与对流层季节内振荡的关系[J].大气科学, 30(5): 745- 752.
[41]李勇, 何金海, 姜爱军, 等, 2007.冬季西太平洋遥相关型的环流结构特征及其与我国冬季气温和降水的关系[J].气象科学, 27(2): 119-125.
[42]李栋梁, 蓝柳茹, 2017.西伯利亚高压强度与北大西洋海温异常的关系[J].大气科学学报, 40(1): 13-24.
[43]刘晴晴, 王盘兴, 徐祥德, 等, 2011.蒙古高压一组环流指数及与中国同期气候异常关系分析[J].热带气象学报, 27(6): 889-898.
[44]麻巨慧, 李丽平, 王盘兴, 等, 2009.“0801 南方雪灾”与同期蒙古高压中期活动关系的分析[J].大气科学学报, 32(5): 652-660.
[45]毛炜峄, 南庆红, 史红政, 2008.新疆气候变化特征及气候分区方法研究[J].气象, 34(10): 69-75.
[46]秦华锋, 金荣花, 2008.“0703”东北暴雪成因的数值模拟研究[J].气象, 34(4): 30-38.
[47]孙晓娟, 王盘兴, 智海, 等, 2010.蒙古高压若干环流指数及与我国冬季气温异常相关的分析和比较[J].高原气象, 29 (6): 1493-1500.
[48]孙欣, 蔡芗宁, 陈传雷, 等, 2011.“070304”东北特大暴雪的分析[J].气象, 37(7): 863-870.
[49]所玲玲, 黄嘉佑, 谭本馗, 2008.北极涛动对我国冬季同期极端气温的影响研究[J].热带气象学报, 24(2): 163-168.
[50]童金, 叶金印, 魏凌翔, 2019.江淮地区两次持续性强降雪过程大气环流及低频特征[J].高原气象, 38 (4): 845-855.DOI: 10.7522/j.issn.1000-0534.2018.00118.
[51]吴伟, 邓莲堂, 王式功, 2011.“0911”华北暴雪的数值模拟及云微物理特征分析[J].气象, 37(8): 991-998.
[52]王建中, 丁一汇, 1995.一次华北强降雪过程的湿对称不稳定性研究[J].气象学报, 53(4): 451-460.
[53]王文, 程麟生, 2000.“95·1”大雪的对称不稳定数值诊断分析[J].气象, 26(7): 9-11.
[54]王文, 程麟生, 2002.“96·1”高原暴雪过程三维条件性对称不稳定的数值研究[J].高原气象, 21(3): 225-232.
[55]王盘兴, 卢楚翰, 管兆勇, 等, 2007.闭合气压系统环流指数的定义及计算[J].南京气象学院学报, 30(6): 601-606.
[56]王盘兴, 赵辉, 任律, 等, 2010.闭合气压系统中心位置指数的计算方案[J].大气科学学报, 33(5): 520-526.
[57]杨冬东, 张录军, 周舒, 等, 2020.北半球冬季极端低温事件变化及其与秋季海冰的联系[J].高原气象, 39(1): 102-109.DOI: 10.7522/j.issn.1000-0534.2019.00020.
[58]杨莲梅, 刘雯, 2016.新疆北部持续性暴雪过程成因分析[J].高原气象, 35(2): 507-519.DOI: 10.7522/j.issn.1000-0534.2014. 00161.
[59]杨莲梅, 杨涛, 贾丽红, 2005.新疆大暴雪气候特征及其水汽分析[J].冰川冻土, 27(3): 389-396.
[60]杨柳, 苗春生, 寿绍文, 2006.2003年春季江淮一次暴雪过程的模拟研究[J].大气科学学报, 29(3): 379-384.
[61]郑怡, 杨成芳, 郭俊建, 等, 2019.一次罕见的山东半岛西部海效应暴雪过程的特征及机理研究[J].高原气象, 38(5): 1017-1026.DOI: 10.7522/j.issn.1000-0534.2018.00140.
[62]张迎新, 张守保, 裴玉杰, 等, 2011.2009年11月华北暴雪过程的诊断分析[J].高原气象, 30(5): 1204-1212.
[63]张书萍, 祝从文, 2011.2009年冬季新疆北部持续性暴雪的环流特征及其成因分析[J].大气科学, 35(5): 833-846.
[64]赵俊荣, 2011.2010年1月新疆北部罕见连续性暖区大暴雪特征及成因分析[J].干旱区资源与环境, 25(5): 117-123.
[65]周淑玲, 丛美环, 吴增茂, 等, 2008.2005年12月3-21日山东半岛持续性暴雪特征及维持机制[J].应用气象学报, 19(4): 444-453.