论文

气候变化背景下陆地季风与非季风区极端降水特征对比

  • 何静 ,
  • 范广洲 ,
  • 张永莉 ,
  • 赖欣
展开
  • 成都信息工程大学大气科学学院/高原大气与环境四川省重点实验室/气候与环境变化联合实验室,四川 成都 610225

收稿日期: 2020-06-03

  网络出版日期: 2021-04-28

基金资助

国家自然科学基金项目(42075019);国家重点研发计划项目(2018YFC1505702);第二次青藏高原综合科学考察研究项目(2019QZKK010203)

Land Monsoon and Non-monsoon Regions under Climate Change Comparison of Extreme Precipitation Characteristics

  • Jing HE ,
  • Guangzhou FAN ,
  • Yongli ZHANG ,
  • Xin LAI
Expand
  • School of Atmospheric Sciences /Plateau Atmosphere and Environment Key Laboratory of Sichuan Province /Joint Laboratory of Climate and Environment Change,Chengdu University of Information Technology,Chengdu 610225,Sichuan,China

Received date: 2020-06-03

  Online published: 2021-04-28

摘要

利用月平均地表气候要素数据集(CRU TS 4.02)的逐月降水和逐月日平均气温资料, 采用线性趋势分析、 滑动平均和相关分析等方法, 研究了1901 -2017年气候变化背景下全球陆地季风区与非季风区的极端降水特征。结果表明: 我国所处的亚洲季风区的极端降水频率分布较为稳定, 仅在变暖减缓时段出现大范围小值区; 非季风区在急剧加速变暖时段极端降水频率分布呈现两极化, 大范围的小值区与大值区共存, 而季风区不易出现这种情况。季风与非季风区极端降水频率均值变化基本趋于一致, 只在加速变暖时段有所不同。季风与非季风极端降水频率小值区格点数占比变化趋于一致, 仅在两个加速变暖时段有所区别, 而对于大值区, 除去1921 -1949年和1950 -1972年, 季风区大值区格点数占比均低于非季风区。季风与非季风区极端降水量的分布形式受气候变化影响相对较小, 但无论处于哪个冷暖时段, 季风区的极端降水量均远远高于非季风区。非季风区的极端降水频率与气温的相关性要好于季风区, 叠加温度趋势变化时, 中高纬度大部分地区呈正相关的关系, 去趋势后, 相关性减弱。

本文引用格式

何静 , 范广洲 , 张永莉 , 赖欣 . 气候变化背景下陆地季风与非季风区极端降水特征对比[J]. 高原气象, 2021 , 40(2) : 324 -332 . DOI: 10.7522/j.issn.1000-0534.2020.00077

Abstract

This article uses the monthly precipitation and monthly daily average temperature data from the monthly average surface climate element data set (CRU TS 4.02), and uses linear trend analysis, moving average and correlation analysis methods to study the background of climate change from 1901 to 2017 The characteristics of extreme precipitation in the global terrestrial monsoon and non-monsoon regions.The results show that the frequency distribution of extreme precipitation in the Asian monsoon region where China is located is relatively stable, and only large-scale and small-value areas appear during the warming slowing period; the non-monsoon area shows a polarization in the frequency distribution of extreme precipitation during the Sharply accelerated warming period.The small value area and the large value area coexist in the monsoon area, which is not easy to occur.The average change of extreme precipitation frequency in monsoon and non-monsoon regions basically tends to be the same, and only differs during periods of accelerated warming.Monsoon and non-monsoon extreme precipitation frequency changes in the proportion of grid points in the small value area tend to be consistent, and only differ in the two accelerated warming periods.For the large value area, excluding the periods of 1921 -1949 and 1950 -1972, the monsoon area is larger.The proportion of grid points in the value area is lower than that in the non-monsoon area.The distribution of extreme precipitation in monsoon and non-monsoon regions is relatively less affected by climate change, but no matter which period of cold or warm, the extreme precipitation in monsoon regions is much higher than that in non-monsoon regions.The correlation between extreme precipitation frequency and temperature in non-monsoon regions is better than that in monsoon regions.When temperature trends are superimposed, most areas of mid-to-high latitudes are positively correlated.After detrending, the correlation weakens.

参考文献

[1]Alexander L V, Zhang X, Peterson T C, et al, 2006.Global observed changes in daily climate extremes of temperature and precipitation[J].Journal of Geophysical Research, 111: D05109.DOI: 10. 1029/2005JD006290.
[2]Frich P, Alexander L V, Della-Marta P, et al, 2002.Observed coherent changes in climatic extremes during the second half of the twentieth century[J].Climate Research, 19: 193-212.
[3]IPCC, 2013.Climate Change 2013: The Physical Science Basis[M].Cambridge: Cambrige University Press.
[4]Trenberth K E, Stepaniak D P, Caron J M, 2000.The global monsoon as seen through the divergent atmosphere circulation[J].Journal of Climate, 13(22): 3969-3993.
[5]Wang B, Liu J, Kim H J, et al, 2012.Recent change of the global monsoon precipitation(1970-2018)[J].Climate Dynamic, 39(5): L06711.DOI: 10.1029/2005GL025347.
[6]Zhai P, Zhang X, Wan H, et al, 2005.Trends in total precipitation and frequency of daily precipitation extremes over China[J].Journal of Climate, 18(7): 1096-1108.
[7]陈姣, 张耀存, 2016.气候变化背景下陆地极端降水和温度变化区域差异[J].高原气象, 35(4): 955-968.DOI: 10.7522/j.issn. 1000-0534.2015.00075.
[8]冯晓莉, 申红艳, 李万志, 等, 2020.1961 -2017年青藏高原暖湿季节极端降水时空变化特征[J].高原气象, 39(4): 694-705.DOI: 10.7522/j.issn.1000-0534.2020.00029.
[9]胡宜昌, 董文杰, 何勇, 2007.21世纪初级极端天气气候事件研究进展[J].地球科学进展, 22(10): 1066-1075.
[10]嵇红霞, 2017.我国东部季风区局地和区域持续性暴雨事件的特征分析[D].上海: 上海师范大学.
[11]姜江, 姜大膀, 林一骅, 2015.RCP4.5情境下中国季风区及降水变化评估[J].大气科学, 39(5): 901-910.
[12]靳俊芳, 2015.近50a来我国东部季风区典型城市极端气候事件与城市内涝研究[D].西安: 陕西师范大学.
[13]赖欣, 范广洲, 董一平, 等, 2010.近47年中国夏季日降水变化热症分析[J].长江流域资源与环境, 11: 1277-1282.
[14]李健颖, 毛江玉, 2019.亚洲夏季风30-60天季节内振荡对中国东部地区持续性极端降水的影响[J].大气科学, 43(4): 796-812.
[15]李娟, 闫会平, 朱志伟.2020.中国夏季极端气温与降水事件日数随平均气温变化的定量分析[J].高原气象, 39(3): 532-542.DOI: 10.7522/j.issn.1000-0534.2019.00042.
[16]李丽平, 许冠宇, 成丽萍, 等, 2012.华南后汛期极端降水特征及变化趋势[J].大气科学学报, 35(5): 570-577.
[17]林壬萍, 周天军, 薛峰, 等, 2012.NCEP/NCAR再分析资料所揭示的全球季风降水变化[J].大气科学, 36(5): 1027-1040.
[18]卢珊, 胡泽勇, 王百朋, 等, 2020.近56年中国极端降水事件的时空变化格局[J].高原气象, 39(4): 683-693.DOI: 10.7522/j.issn.1000-0534.2019.00058.
[19]彭冬冬, 周天军, 邹立维, 等, 2016.FGOALS-g2模式模拟和预估的全球季风区极端降水及其变化[J].大气科学, 40(5): 1059-1072.
[20]彭思敏, 李育, 李依婵, 2019.全球季风区的定义与变化及其影响因素[J].亚热带资源与环境学报, 14(1): 1-8.
[21]任正果, 张明军, 王圣杰, 等, 2014.1961-2011年中国南方地区极端降水事件变化[J].地理学报, 69(5): 640-649.
[22]孙健奇, 敖娟, 2013.中国冬季降水和极端降水对变暖的相应[J].科学通报, 58(8): 674-679.
[23]王小玲, 翟盘茂, 2008.1957-2004年中国不同强度级别降水的变化趋势特征[J].热带气象学报, 24(5): 459-466.
[24]杨霞, 周鸿奎, 赵克明, 等, 2020.1991 -2018年新疆夏季小时极端强降水特征[J].高原气象, 39(4): 762-773.DOI: 10.7522/j.issn.1000-0534.2019.00114.
[25]叶培龙, 刘新伟, 赵文婧, 等, 2019.2016年8月甘肃省持续性高温过程及其异常大气环流特征[J].高原气象, 38(6): 1284-1292.DOI: 10.7522/j.issn.1000-0534.2019.00006.
文章导航

/