论文

气溶胶对中国中纬度夏季低层风速的影响

  • 徐小红 ,
  • 余兴 ,
  • 朱延年 ,
  • 戴进 ,
  • 董自鹏
展开
  • 陕西省气象科学研究所,陕西 西安 710014

收稿日期: 2019-09-17

  网络出版日期: 2021-04-28

基金资助

国家重点研发计划项目(2018YFC1507903);国家自然科学基金项目(41575136);陕西省气象局研究型业务重点科研项目(2013Z-4);陕西省重点研发计划项目(2018SF-386)

Impact of Aerosol on the Summer Wind Speed at the Lower Layer in the Mid-Latitude of China

  • Xiaohong XU ,
  • Xing YU ,
  • Yannian ZHU ,
  • Jin DAI ,
  • Zipeng DONG
Expand
  • Meteorological Institute of Shaanxi Province,Xi’an 710014,Shaanxi,China

Received date: 2019-09-17

  Online published: 2021-04-28

摘要

利用中国中纬度133个气象站夏季14:00(北京时)气候观测资料和2002 -2018年MODIS夏季气溶胶光学厚度AOD(Aerosol Optical Depth)资料, 把气候资料按气溶胶变化的转折年分为两个时间序列(建站至2011年, 建站至2018年), 通过对两个时间序列各站夏季风速、 温度、 海平面气压年变率和AOD的分布对比分析, 研究了气溶胶对低层风速变化的影响。结果表明: (1)青藏高原(下称高原)地区夏季AOD较小, 秦巴山区和平原地区AOD较大, 2002 -2011年AOD呈逐年增大趋势, 而2002 -2018年变为减小趋势, 反映出我国2012年后环境治理成效。(2)2011年以前, 高原和秦巴山区西部夏季以增温为主, 而秦巴山区东部和内陆平原以降温为主, 114°E附近降温最明显; 与建站至2018年时间序列对比, 在AOD减小的同时, 降温和增压幅度都有所减小, 反映出温度和气压变化对气溶胶的响应关系。(3)夏季风速普遍呈减小趋势, 内陆平原减小幅度最大, 年变率为-0.06~-0.02 m·s-1。结合气溶胶分析发现, 风速年变率与AOD分布呈反位相关系。通过两个时间序列的对比, 随AOD均值下降, 对应风速减小程度有所缓解, 反映了风速对气溶胶变化的敏感性。

本文引用格式

徐小红 , 余兴 , 朱延年 , 戴进 , 董自鹏 . 气溶胶对中国中纬度夏季低层风速的影响[J]. 高原气象, 2021 , 40(2) : 367 -373 . DOI: 10.7522/j.issn.1000-0534.2020.00037

Abstract

Based on the fact that the turning point of aerosol variation has occurred since 2012, two time series of climatological data were set by the period last to 2011 and that to 2018 from the available.The used data is daily of 14:00 (Beijing Time) in summer season last more than 40 years from selected unmigrated 133 meteorological stations.The annual variability of wind speed, temperature and sea-level pressure in the mid-latitude of China were analyzed and compared between two time series.Also the spatial distribution and annual variability of AOD were analyzed and were correlated with that of wind speed, temperature and pressure with the data of MODIS aerosol optical thickness (AOD) product from 2002 to 2018.The results show that: (1) AOD was small over the Qinghai-Xizang plateau (QXP), and was large over the Qing-ba mountainous area and inland plain with increasing trend from 2002 to 2011 and turning decrease from 2002 to 2018, which suggests the effectiveness of air-pollution control after 2012.(2) Before 2012, the temperature increased in QXP and the western Qing-ba mountainous area, and declined in the eastern Qing-ba mountainous area and the inland plain and with maximum decreasing around 114°E.Compared with that of time series to 2018, the extent of temperature decrease and pressure increases lightly declined during AOD decreasing, which reflects the respondence of temperature and pressure to AOD.(3) The wind speed in summer was generally decreasing, especially in the inland plain with the largest annual reduction rate of -0.06~-0.02 m·s-1.Also the annual variability of wind speed was reverse to that of AOD distribution.It was shown that the decreasing extent of wind speed was modulated by declination of average AOD by the comparison of two time series, which suggests the sensitivity of wind speed to aerosol variation.

参考文献

[1]Fu G B, Yu J J, Zhang Y C, et al, 2011.Temporal variation of wind speed in China for 1961 -2007 [J].Theoretical and Applied Climatology, 104: 313-324.
[2]Groisman P Y, Knight R W, Karl T R, et al, 2004.Contemporary changes of the hydrological cycle over the contiguous United States: Trends derived from in situ observations [J].Journal of Hydrometeorology, 5: 64-85.
[3]Jacobson M Z, Kaufman K J, 2006.Wind reduction by aerosol particles [J].Geophysical Research Letters, 33: L24814.DOI: 10.1029/2006GL027838.
[4]Jiang Y, Luo Y, Zhao Z C, 2013.Maximum wind speed changes over China [J].Acta Meteorologica Sinica, 27(1): 63-74.
[5]Jiang Y, Luo Y, Zhao Z C, et al, 2010.Changes in wind speed over China during 1956 -2004 [J].Theoretical and Applied Climatology, 99: 421-430.
[6]Kim J C, Paik K, 2015.Recent recovery of surface wind speed after decadal decrease: A focus on South Korea [J].Climate Dynamics, 45: 1699-1712.
[7]Klink K, 1999.Trends in mean monthly maximum and minimum surface wind speeds in the coterminous United States, 1961 to 1990 [J].Climate Research, 13: 193-205.
[8]Lee K H, Li Z Q, Wong M S, et al, 2007.Aerosol single scattering albedo estimated across China from a combination of ground and satellite measurements [J].Journal of Geophysical Research, 112: D22S15.DOI: 10.1029/2007JD009077.
[9]Li Y, Wang Y, Chu H Y, et al, 2008.The climate influence of anthropogenic land-use changes on near-surface wind energy potential in China [J].Chinese Science Bulletin, 53: 2859-2866.
[10]Li Z, Yan Z W, 2009.Homogenized daily mean/maximum/minimum temperature series for China from 1960-2008 [J].Atmospheric and Oceanic Science Letters, 2(4): 237-243.
[11]Li Z, Yan Z W, Tu K, et al, 2011.Changes in wind speed and extremes in Beijing during 1960 -2008 based on homogenized observations [J].Advances in Atmospheric Sciences, 28(2): 408-420.
[12]McVicar T R, Van Niel T G, Li L T, et al, 2008.Wind speed climatology and trends for Australia, 1975 -2006: Capturing the stilling phenomenon and comparison with near-surface reanalysis output [J].Geophysical Research Letters, 35: L20403.DOI: 10.1029/2008GL035627.
[13]Pirazzoli P A, Tomasin A, 2003.Recent near-surface wind changes in the central Mediterranean and Adriatic areas [J].International Journal of Climatology, 23: 963-973.
[14]Pryor S C, Barthelmie R J, Riley E S, 2007.Historical evolution of wind climates in the USA [J].Journal of Physics: Conference Series, 75: 012065.DOI: 10.1088/1742-6596/75/1/012065.
[15]Pryor S C, Barthelmie R J, Young D T, et al, 2009.Wind speed trends over the contiguous United States [J].Journal of Geophysical Research, 114: D14105.DOI: 10.1029/2008JD011416.
[16]Pryor S C, Ledolter J, 2010.Addendum to “Wind speed trends over the contiguous United States” [J].Journal of Geophysical Research, 115: D10103.DOI: 10.1029/2009JD013281.
[17]Roderick M L, Rotstayn L D, Farquhar G D, et al, 2007.On the attribution of changing pan evaporation [J].Geophysical Research Letters, 34: L17403.DOI: 10.1029/2007GL031166.
[18]Smits A, Klein T A M G, K?nnen G P, 2005.Trends in storminess over the Netherlands, 1962 -2002 [J].International Journal of Climatology, 25: 1331-1344.
[19]Tuller S E, 2004.Measured wind speed trends on the west coast of Canada [J].International Journal of Climatology, 24: 1359-1374.
[20]Wu J, Zha J L, Zhao D M, 2016.Estimating the impact of the changes in land use and cover on the surface wind speed over the East China Plain during the period 1980 -2011 [J].Climate Dynamics, 46: 847-863.
[21]Wu J, Zha J L, Zhao D M, 2017.Evaluating the effects of land use and cover change on the decrease of surface wind speed over China in recent 30 years using a statistical downscaling method [J].Climate Dynamics, 48: 131-149.
[22]Wu J, Zha J L, Zhao D M, et al, 2018.Changes in terrestrial near-surface wind speed and their possible causes: An overview [J].Climate Dynamics, 51: 2039-2078.
[23]Xu M, Chang C P, Fu C, et al, 2006.Steady decline of East Asian Monsoon winds, 1969 -2000: Evidence from direct ground measurements of wind speed [J].Journal of Geophysical Research, 111: D24111.DOI: 10.1029/2006 JD007337.
[24]Zeng Z Z, Ziegler A D, Searchinger T, et al, 2019.A reversal in global terrestrial stilling and its implications for wind energy production [J].Nature Climate Change, 9: 979-985.DOI: 10.1038/s41558-019-0622-6.
[25]Zha J L, Wu J, Zhao D M, 2017b.Effects of land use and cover change on the near-surface wind speed over China in the last 30 years [J].Progress in Physical Geography, 41(1): 46-67.DOI: 10.1177/0309133316663097.
[26]Zha J L, Wu J, Zhao D M, et al, 2017a.Changes of the probabilities in different ranges of near-surface wind speed in China during the period for 1970-2011 [J].Journal of Wind Engineering & Industrial Aerodynamics, 169: 156-167.
[27]Zha J L, Wu J, Zhao D M, et al, 2019a.A possible recovery of the near-surface wind speed in Eastern China during winter after 2000 and the potential causes [J].Theoretical and Applied Climatology, 136: 119-134.b
[28]Zha J L, Wu J, Zhao D M, et al, 2020.Future projections of the near-surface wind speed over Eastern China based on CMIP5 datasets [J].Climate Dynamics, 54: 2361-2385.
[29]Zha J L, Zhao D M, Wu J, et al, 2019b.Numerical simulation of the effects of land use and cover change on the near-surface wind speed over Eastern China [J].Climate Dynamics, 53: 1783-1803.
[30]Zhang Z T, Wang K C, 2020.Stilling and recovery of the surface wind speed based on observation, reanalysis, and geostrophic wind theory over China from 1960 to 2017 [J].Journal of Climate, 33: 3989-4008.DOI: 10.1175/JCLI-D-19-0281.1.
[31]Zou H C, Li D I, Hu Y Q, et al, 2005.Characteristics of climatic trends and correlation between pan-evaporation and environmental factors in the last 40 years over China [J].Chinese Science Bulletin, 50 (12): 1235-1241.
[32]董自鹏, 李星敏, 杜川利, 等, 2013.西安地区气溶胶光学特性研究[J].高原气象, 32(3): 856-864.DOI: 10.7522/j.issn.1000-0534.2012.00079.
[33]黄小燕, 张明军, 王圣杰, 等, 2011.西北地区近50年日照时数和风速变化特征[J].自然资源学报, 26(5): 825-835.
[34]江滢, 罗勇, 赵宗慈, 2010.全球气候模式对未来中国风速变化预估[J].大气科学, 34(2): 323-336.
[35]江滢, 罗勇, 赵宗慈, 等, 2009.中国及世界风资源变化研究进展[J].科技导报, 27(13): 96-104.
[36]江滢, 罗勇, 赵宗慈.2008.近50年我国风向变化特征[J].应用气象学报, 19(6): 666-672.
[37]金巍, 任国玉, 曲岩, 等, 2012.1971 -2010年东北三省平均地面风速变化[J].干旱区研究, 29(4): 648-653.
[38]刘学锋, 梁秀慧, 任国玉, 等, 2012.台站观测环境改变对我国近地面风速观测资料序列的影响[J].高原气象, 31(6): 1645-1652.
[39]刘学锋, 任国玉, 梁秀慧, 等, 2009.河北地区边界层内不同高度风速变化特征[J].气象, 35(7): 46-53.
[40]彭玥, 赵天良, 郑小波, 等, 2017.大气环境变化中大气颗粒物PM<sub>1</sub>的重要作用——关中平原MODIS气溶胶产品的气候分析[J].中国环境科学, 37(7): 2443-2449.
[41]任国玉, 郭军, 徐铭志, 等, 2005.近50年中国地面气候变化基本特征[J].气象学报, 63 (6): 942-956.
[42]孙家仁, 刘煜, 2008.中国区域气溶胶对东亚夏季风的可能影响(Ⅰ): 硫酸盐气溶胶的影响[J].气候变化研究进展, 4(2): 111-116.
[43]王小玲, 翟盘茂, 2004.中国春季沙尘天气频数的时空变化及其与地面风压场的关系[J].气象学报, 62(1): 96-103.
[44]王遵娅, 丁一汇, 何金海, 等, 2004.近50年来中国气候变化特征的再分析[J].气象学报, 62(2): 228-236.
[45]徐丽娇, 胡泽勇, 赵亚楠, 等, 2019.1961 -2010年青藏高原气候变化特征分析[J].高原气象, 38(5): 911-918.DOI: 10.7522/j.issn.1000-0534.2018.00137.
[46]姚慧茹, 李栋梁, 2016.1971 -2012年青藏高原春节风速的年际变化及对气候变暖的响应[J].气象学报, 74(1): 60-75.
[47]张爱英, 任国玉, 郭军, 等, 2009.近30年我国高空风速变化趋势分析[J].高原气象, 28(3): 680-687.
[48]张莉, 任国玉, 2003.中国北方沙尘暴频数演化及其气候成因分析[J].气象学报, 61(6): 744-750.
[49]张芝娟, 陈斌, 贾瑞, 等, 2019.全球不同类型气溶胶光学厚度的时空分布特征[J].高原气象, 38(3): 660-672.DOI: 10.7522/j.issn.1000-0534.2019.00002.
文章导航

/