论文

2019年7月3日开原龙卷形成环境背景及机理探究

  • 袁潮 ,
  • 王式功 ,
  • 马湘宜 ,
  • 杨磊 ,
  • 陈丽楠
展开
  • <sup>1.</sup>成都信息工程大学大气科学学院,四川 成都 610225;<sup>2.</sup>辽宁省盘锦市气象局,辽宁 盘锦 124010;<sup>3.</sup>辽宁省气象灾害监测预警中心,辽宁 沈阳 110166;<sup>4.</sup>吉林省辽源市气象局,吉林 辽源 136200

收稿日期: 2020-04-03

  网络出版日期: 2021-04-28

基金资助

气象预报业务关键技术发展专项(YBGJXM20201A-06);中国气象局预报员专项(CMAYBY2020-026)

Environmental Background and Formative Mechanisms of a Tornado Occurred in Kaiyuan on 3 July 2019

  • Chao YUAN ,
  • Shigong WANG ,
  • Xiangyi MA ,
  • Lei YANG ,
  • Linan CHEN
Expand
  • <sup>1.</sup>College of Atmospheric Sciences,Chengdu University of Information Technology,Chengdu 610225,Sichuan,China;<sup>2.</sup>Panjin Meteorological Bureau,Panjin 124010,Liaoning,China;<sup>3.</sup>Liaoning Meteorological Disaster Warning Center,Shenyang 110166,Liaoning,China;<sup>4.</sup>Liaoyuan Meteorological Bureau,Liaoyuan 136200,Jilin,China

Received date: 2020-04-03

  Online published: 2021-04-28

摘要

利用高时空分辨率多源观测资料对2019年7月3日辽宁省开原市一次EF4级超强龙卷过程进行分析。结果表明: (1)此次龙卷过程发生在高空东北冷涡西南侧的天气背景之下, 低层次天气尺度横槽抬升作用是减小对流抑制的关键机制, 起源于干线的地面辐合线与雷暴下沉出流所产生的中尺度伪冷锋相遇是龙卷风暴的触发机制。(2)超低空急流、 高空干空气平流以及午后地面太阳辐射加热共同作用是造成局地热力和动力不稳定迅速增大的原因, 较大的对流有效位能、 低层湿度、 垂直风切变及风暴相对螺旋度为龙卷母云的生成提供了有利的环境条件。(3)多普勒雷达呈现出经典超级单体龙卷特征, 钩状回波位于超级单体右后侧, 龙卷生成于钩状回波边缘。径向速度场显示气旋式旋转首先出现在低层, 龙卷的加强发展伴随低层中气旋和明显的相邻方位角切变。雷达反射率三维立体图像可见龙卷中心上方存在强回波的凹陷区。(4) 超低空急流加强低层水平涡度输送, 两条辐合线相遇形成的中尺度气旋性环流为龙卷提供初始的垂直涡度来源, 在上升气流的拉伸作用下, 垂直涡度收缩助力龙卷形成。

本文引用格式

袁潮 , 王式功 , 马湘宜 , 杨磊 , 陈丽楠 . 2019年7月3日开原龙卷形成环境背景及机理探究[J]. 高原气象, 2021 , 40(2) : 384 -393 . DOI: 10.7522/j.issn.1000-0534.2020.00061

Abstract

In this study, an EF4 scale tornado occurred in Kaiyuan on 3 July 2019 was investigated through several high spatio-temporal resolution observations.The results show that: (1) The tornado was under the southwest side of a cold vortex over Northeast China, a sub-synoptic scale transverse trough at low level was a destabilizing mechanism for convection development, while the encounter of the convergence line that originated from a dry line and a mesoscale pseudo cold front was the trigger mechanism of the tornado storm.(2) The rapid increase of thermal and dynamic instability are caused by the comprehensive effects of ultra low level jet, high level dry airflow and solar radiation heating.The large value of CAPE, relative humidity at low-level, vertical wind shear and storm relative helicity (SRH) are conducive to the formation of the tornadic storm.(3) The tornado was generated at the edge of a typical hook-shape supercell echo.Cyclone rotations first appeared in the lower layers, and the development of the tornado was associated with the mid-lower cyclones and significantly adjacent azimuthal velocity shear.A weak echo hole (WEH) could be found above the center of tornado in 3-D image of the radar reflectivity.(4) The ultra low level jet enhanced the transport of horizontal vorticity.The mesoscale cyclonic circulation formed by the meeting of the two convergence lines provided an initial source of vertical vorticity for the tornado.The tornado was generated by the contraction of vertical vorticity under the stretching of the updraft.

参考文献

[1]Brandes E A, Daviesjones R P, Johnson B C, 1988.Streamwise vorticity effects on supercell morphology and persistence[J].Journal of the Atmospheric Sciences, 45(6): 947-963.
[2]Brooks H E, Lee J W, Craven J P, 2003.The spatial distribution of severe thunderstorm and tornado environments from global reanalysis data[J].Atmospheric Research, 67(3): 73-94.
[3]Burgess D W, Lemon L R, 1990.Severe Thunderstorm Detection by Radar[C]//Atlas D.Radar in Meteorology.Boston, MA: American Meteorological Society, 619-647.
[4]Craven J P, Brooks H E, 2004.Baseline climatology of sounding derived parameters associated with deep, moist convection[J].National Weather Digest, 28(1): 13-24.
[5]Davies-Jones R, 1984.Streamwise vorticity: the origin of updraft rotation in supercell storms[J].Journal of the Atmospheric Sciences, 41(20): 2991-3006.
[6]Davies-Jones R, Trapp R J, Bluestein H B, 2001.Tornadoes and tornadic storms[J].Meteorological Monographs, 28(50): 167-221.
[7]Doswell, C A, Evans J S, 2003.Proximity sounding analysis for derechos and supercells: An assessment of similarities and differences[J].Atmospheric Research, 67(3): 117-133.
[8]Fujita T T, 1971.Proposed characterization of tornadoes and hurricanes by area and intensity[D].Chicago: The University of Chicago.
[9]Fujita T T, 1981.Tornadoes and downbursts in the context of generalized planetary scales[J].Journal of Atmospheric Sciences, 38(8): 1511-1534.
[10]Giordano L A, Fritsch J M, 2009.Strong tornadoes and flash-flood-producing rainstorms during the warm season in the mid-Atlantic region[J].Weather & Forecasting, 6(4): 38-38.
[11]Grams J S, Thompson R L, Snively D V, et al, 2012.A climatology and comparison of parameters for significant tornado events in the United States[J].Weather & Forecasting, 27(1): 106-123.
[12]Hamill T M, Schneider R S, Brooks H E, et al, 2012.The May 2003 extended tornado outbreak.[J].Bulletin of the American Meteorological Society, 86(4): 531-542.
[13]Lemon L R, Doswell III C A, 1979.Severe thunderstorm evolution and mesocyclone structure as related to tornadogenesis[J].Monthly Weather Review, 107(9): 1184-1197.
[14]Rasmussen E N, Blanchard D O, 1998.A baseline climatology of sounding-derived supercell and tornado forecast parameters[J].Weather & Forecasting, 13(4): 1148-1164.
[15]Rotunno R, Klemp J B, 1982.The Influence of the Shear-Induced Pressure Gradient on Thunderstorm Motion[J].Monthly Weather Review, 110(2): 136-151.
[16]Schultz D M, Richardson Y P, Markowski P M, et al, 2014.Tornadoes in the Central United States and the ''Clash of Air Masses''[J].Bulletin of the American Meteorological Society, 95(11): 1704-1712.
[17]Wakimoto R M, Wilson J W, 1989.Non-supercell tornadoes[J].Monthly Weather Review, 117(6): 1113-1140.
[18]Wilson J W, 1986.Tornado genesis by Nonprecipitation induced wind shear lines[J].Monthly Weather Review, 114(2): 270-284.
[19]Wind Science and Engineering Center, 2004.A recommendation for an enhance Fujita scale (EF-scale) [EB/OL].Wind Science and Engineering Center Rep, Texas Tech University, Lubbock, TX.http: //www.spc.noaa.gov/faq/tornado/ef-tuu.pdf.
[20]范雯杰, 俞小鼎, 2015.中国龙卷的时空分布特征[J].气象, 41(7): 793-805.
[21]王秀明, 俞小鼎, 2019.热带一次致灾龙卷形成物理过程研究[J].气象学报, 77(3): 387-404.
[22]王秀明, 俞小鼎, 周小刚, 2015.中国东北龙卷研究: 环境特征分析[J].气象学报, 73(3): 425-441.
[23]徐小红, 余兴, 朱延年, 等, 2018.6·23龙卷FY-2G卫星云微物理特征分析[J].高原气象, 37(6): 1737-1748.DOI: 10.7522/j.issn.1000-0534.2018.00041.
[24]姚叶青, 郝莹, 张义军, 等, 2012.安徽龙卷发生的环境条件和临近预警[J].高原气象, 31(6): 1721-1730.
[25]俞小鼎, 郑媛媛, 廖玉芳, 等, 2008.一次伴随强烈龙卷的强降水超级单体风暴研究[J].大气科学, 32(3): 508-522.
[26]曾明剑, 吴海英, 王晓峰, 等, 2016.梅雨期龙卷环境条件与典型龙卷对流风暴结构特征分析[J].气象, 42(3): 280-293.
[27]张琳娜, 郭锐, 何娜, 等, 2015.“7·21”北京特大暴雨过程龙卷形成可能性探究[J].高原气象, 34(4): 1074-1083.DOI: 10.7522/j.issn.1000-0534.2014.00025.
[28]张涛, 关良, 郑永光, 等, 2020.2019年7月3日辽宁开原龙卷灾害现场调查及其所揭示的龙卷演变过程[J].气象, 46(5): 603-617.
[29]张小玲, 杨波, 朱文剑, 等, 2016.2016年6月23日江苏阜宁EF4级龙卷天气分析[J].气象, 42(11): 1304-1314.
[30]郑艳, 俞小鼎, 任福民, 等, 2017.海南一次超级单体引发的强烈龙卷过程观测分析[J].气象, 43(6): 675-685.
[31]郑永光, 朱文剑, 姚聃, 等, 2016.风速等级标准与2016年6月23日阜宁龙卷强度估计[J].气象, 42(11): 1289-1303.
[32]郑媛媛, 张备, 王啸华, 等, 2015.台风龙卷的环境背景和雷达回波结构分析[J].气象, 41(8): 942-952.
[33]中国气象局, 2019.龙卷强度等级: QX/T 478-2019[S].北京: 中国气象出版社: 1-4.
文章导航

/