以黄河源区水文循环过程为主要研究对象, 应用TRMM卫星和GPM卫星的日降水产品(TMPA 3B42和IMERG-Final)驱动流域分布式水文模型SWAT, 将结果进行比较分析, 评估了新型卫星降水在黄河源区的适用性及其模拟潜力。研究表明: (1)对于大尺度流域而言, 同时对多个子流域进行参数的敏感性分析及率定的结果不适用于每一个站点。因此, 本文采用对每个水文站点所对应的子流域依次进行敏感性分析与验证的方式进行订正, 最终得到验证期内3个站点径流模拟结果的纳什效率系数均在0.50以上, 决定系数都在0.60以上。(2)从模拟结果来看, IMERG-Final产品的模拟结果要优于TMPA 3B42产品。两种卫星降水产品均能模拟出黄河源区月径流变化的主要趋势, 但均表现为对于径流峰值的模拟偏高。新型卫星产品(GPM)较前任TRMM卫星产品的精度确实有提高, 且具备一定的模拟潜力, 但对于高海拔地区的模拟能力有待提高, 需要进一步订正。
In this paper, two kinds of daily satellites precipitation products(TMPA 3B42 and IMERG-Final) are used to drive SWAT hydrological model.The results are compared and analyzed, and the applicability and simulation potential of the new satellite precipitation in the source region of Yellow River (SRYR) are evaluated.The results indicate that: (1) for large-scale watersheds, the results of sensitivity analysis and calibration of parameters for multiple sub-watersheds at the same time are not applicable to each station.Therefore, we choose to make sensitivity analysis and calibration of parameters in each station.Finally, the Nash-Sutcliffe efficiency coefficient (NSE) of the runoff simulation results of the three stations in the validation period are all above 0.50, and the determination coefficients (R2) are all above 0.60.(2) IMERG-Final products are better than TMPA 3B42 products in simulation results.Both of them can simulate the main trends of monthly runoff change in SRYR, but they have overestimated the peak values of runoff.The precision of the new satellite product (GPM) is higher than that of the predecessor satellite product (TRMM).However, the accuracy of the GPM products in high altitude areas needs to be improved and further revised.
[1]Arnold J G, Moriasi D N, Gassman P W, et al, 2012.SWAT: Model use, calibration, and validation[J].Transactions of the ASABE, 55(4): 1491-1508.
[2]Battan L J, 1973.Radar observation of the atmosphere[M].University of Chicago Press.
[3]Beven K.On the generalized kinematic routing method[J].Water Resources Research, 15(5): 37-44.
[4]Dirks K N, Hay J E, Stow C D, et al, 1998.High-resolution studies of rainfall on Norfolk Island: Part II: Interpolation of rainfall data[J].Journal of Hydrology, 208(3-4): 187-193
[5]Fang J, Yang W, Luan Y, et al, 2019.Evaluation of the TRMM 3B42 and GPM IMERG products for extreme precipitation analysis over China[J].Atmospheric Research, 223: 24-38.
[6]Fischer G, Fnachtergaele F, Sprieler S, et al, 2008.Global Agro-ecological Zones assessment for Agriculture (GAEZ 2008)[C].IIASA, Laxenburg, Austria and FAO, Rome, Italy.
[7]Guo H, Chen S, Bao A, et al, 2016.Early assessment of integrated multi-satellite retrievals for global precipitation measurement over China[J].Atmospheric Research, 176: 121-133.
[8]Hao Z C, Tong K, Liu X L, et al, 2014.Capability of TMPA products to simulate streamflow in upper Yellow and Yangtze River basins on Tibetan Plateau[J].Water Science and Engineering, 7(3): 237-249.
[9]Hirpa F A, Gebremichael M, Hopson T, 2010.Evaluation of high-resolution satellite precipitation products over very complex terrain in Ethiopia[J].Journal of Applied Meteorology and Climatology, 49(5): 1044-1051.
[10]Immerzeel W W, Van Beek L P H, Bierkens M F P, 2010.Climate change will affect the Asian water towers[J].Science, 328(5984): 1382-1385.
[11]IPCC, 2013.Working group I contribution to the IPCC fifth assessment Report[R].Climate Change 2013: The Physical Science Basis: Summary for Policymakers.
[12]Jiang S, Ren L, Hong Y, et al, 2012.Comprehensive evaluation of multi-satellite precipitation products with a dense rain gauge network and optimally merging their simulated hydrological flows using the Bayesian model averaging method[J].Journal of Hydrology (Amsterdam), 452-453: 213-225.
[13]Krajewski W F, Smith J A, 2002.Radar hydrology: Rainfall estimation[J].Advances in Water Resources, 25(8): 1387-1394.
[14]Meng X, Wang H, Lei X, et al, 2017.Hydrological modeling in the Manas River Basin using soil and water assessment tool driven by CMADS[J].Tehnicki Vjesnik-Technical Gazette, 24(2): 525-534.
[15]Radi? V, Bliss A, Beedlow A C, et al, 2014.Regional and global projections of twenty-first century glacier mass changes in response to climate scenarios from global climate models[J].Climate Dynamics, 42: 37-58.
[16]Sala O E, Rd C F, Armesto J J, et al, 2000.Global biodiversity scenarios for the year 2100[J].Science, 287(5459): 1770-1774.
[17]Salio P, Hobouchian M P, Skabar Y G, et al, 2015.Evaluation of high-resolution satellite precipitation estimates over southern South America using a dense rain gauge network[J].Atmospheric Research, 163: 146-161.
[18]Shi C X, Xie Z H, Qian H, et al, 2011.China land soil moisture EnKF data assimilation based on satellite remote sensing data[J].Science China (Earth Sciences), 54(9): 1430-1440.
[19]Stocker T F, Raible C C, 2005.Climate change: water cycle shifts gear[J].Nature, 434(7035): 830.
[20]Tang G, Ma Y, Long D, et al, 2016.Evaluation of GPM Day-1 IMERG and TMPA Version-7 legacy products over mainland China at multiple spatiotemporal scales[J].Journal of Hydrology, 533: 152-167.
[21]Wang X, Pang G, Yang M, et al, 2018.Precipitation over the Tibetan Plateauduring recent decades: A review based on observations and simulations [J].International Journal of Climatology, 38, 1116-1131.
[22]Ward E, Buytaert W, Peaver L, et al, 2011.Evaluation of precipitation products over complex mountainous terrain: A water resources perspective[J].Advances in Water Resources, 34(10): 1222-1231.
[23]Yao T, Wang Y, Liu S, et al, 2004.Recent glacial retreat in High Asia in China and its impact on water resource in Northwest China[J].Science in China, 47(12): 1065-1075.
[24]Yong B, Ren L L, Hong Y, et al, 2010.Hydrologic evaluation of Multisatellite precipitation analysis standard precipitation products in basins beyond its inclined latitude band: A case study in Laohahe basin, China[J].Water Resources Research, 46(7): 759-768.
[25]程立真, 杨梅学, 王学佳, 等, 2020.TRMM 3B42 降水产品在洮河中上游的精度评估分析[J].高原气象, 39(1): 185-195. DOI: 10.7522/j.issn.1000-0534.2019.00016.
[26]金晓龙, 邵华, 张弛, 等, 2016.GPM卫星降水数据在天山山区的适用性分析[J].自然资源学报, (12): 106-117.
[27]刘俊峰, 陈仁升, 韩春坛, 等, 2010.多卫星遥感降水数据精度评价[J].水科学进展21(3): 343-348.
[28]刘兆晨, 杨梅学, 王学佳, 等, 2020.GPM和TRMM卫星日降水数据在黄河源区的适用性分析[J].冰川冻土, 42(2): 575-586.
[29]孟现勇, 师春香, 刘时银, 等, 2016.CMADS数据集及其在流域水文模型中的驱动作用——以黑河流域为例[J].人民珠江, 37(7): 1-19.
[30]宁吉才, 刘高焕, 叶宇, 等, 2012.SWAT模型降水输入参数的改进研究[J].自然资源学报, 27(5): 866-875.
[31]邬伦, 吴小娟, 肖晨超, 等, 2010.五种常用降水量插值方法误差时空分布特征研究——以深圳市为例[J].地理与地理信息科学, 26(3): 19-24.
[32]杨军军, 高小红, 李其江, 等, 2013.湟水流域SWAT模型构建及参数不确定性分析[J].水土保持研究, 20(1): 82-88.