随着全球变暖的趋势越来越明显, 气候变化研究也成为最受关注的问题。均一化长序列数据是气候变化研究的基础。然而由于台站的迁移等因素, 导致了资料序列中的非均一性, 这种包含非气候因素变化的非均一性气候序列直接影响了气候研究的不确定性。本文在综述国内外地面气候资料均一性检验方法、 地面气候资料非均一性产生的原因等进展的基础上, 重点分析了中国西北地区台站迁移对气候资料均一性的影响, 认为台站迁移是造成气候资料不均一性的主要因素之一, 使研究结果不能正确反映气候的变化趋势; 国外成熟的均一性检验和订正方法为我国西北地区地面台站迁移对气候资料均一性的影响研究提供了可借鉴的思路、 方法和手段; 以往关于我国西北部地区气候变化的研究较少考虑气候序列中存在的非均一问题, 造成了研究结论的不确定性。因此有必要对我国西北地区经过台站迁移的台站进行均一化的检验和订正。
As the trend of global warming more and more obvious, the climate change research is becoming the most concerned problem.Long homogeneous data is the basis of climate change research.However, the moving of stations, changing of equipment and the variety of observation rules result in the inhomogeneity of data series.These inhomogeneous climate series directly affects the climate research uncertainty.Based on the review of domestic and foreign surface climate data inhomogeneity testing methods, the causes of surface climate data inhomogeneity and other developments, this paper focuses on the analysis of the impact of station relocation on climate data inhomogeneity in Northwest China.The author believes that station relocation is one of the main factors causing the homogeneity of climate data.Thus, the research results cannot correctly reflect the trend of climate change.The mature homogeneity test and adjustment methods abroad provide useful ideas, methods and means for the study of the impact of surface station relocation on climate data inhomogeneity in Northwest China.Previous studies on climate change in Northwest China have rarely considered the inhomogeneity of the climate sequence, which has caused uncertainty in the conclusions of the study.Therefore, it is necessary to carry out homogeneity tests and adjustments to the stations that have moved through stations in the northwest of China.
[1]Aguilar E, Auer I, Brunet M, et al, 2003.Guidelines on climate metadata and homogenization [R].WMO-TD No.1186, WCDMP No.53.Geneva, Switzerland: World Meteorological Organization, 55.
[2]Alexandersson H, 1986.A homogeneity test applied to precipitation data[J].International Journal of Climatology, 6: 661-675.
[3]Alexandersson H, Moberg A, 1997.Homogenization of Swedish temperaturedata.PartⅠ: Homogeneity test for linear trends[J].International Journal of Climatology, 17: 25-34.
[4]Chenoweth M, 1992.A possible discontinuity in the U.S.historical temperature record[J].Climate, 5: 1172-1179.
[5]Costa A C, Soares A, 2009.Homogenization of climate data: Review and new perspectives using geostatistics [J].Mathematical Geoscience, 41: 291-305.
[6]Easterling D R, Peterson T C, 1995.A new method for detecting and adjusting for undocumented discontinuities in climatological time series [J].International Journal of Climatology, 15: 369-377.
[7]Hawkins D M, 1977.Testing a sequence of observations for a shift in random location [J].Journal of the American Statistical Association, 3: 180-185.
[8]Hinkley D V, 1969.Inference about the intersection in two phase regression[J].Biometrika, 56: 495-504.
[9]Hinkley D V, 1971.Inference in two-phase regression [J].Journal of the American Statistical Association, 66: 736-743.
[10]Li Z, Yan Z W, 2010.Application of multiple analysis of series for homogenization (MASH) to Beijing daily temperature series 1960 -2006[J].Advances in Atmospheric Sciences, 27 (4): 777-787.
[11]Lund R, Reeves J, 2002.Detection of undocumented changepoints: A revision of the two-phase regression model [J].Journal of Climate, 15: 2547-2554.
[12]Quayle R G, Easteriing D R, Kari T R, et al, 1991.Effects of recent ther2mometer changes in the cooperative station network[J].Bulletin of the American Meteorological Society, 72: 1718-1724.
[13]Reeves J, Chen J, Wang X L, et al, 2007.A review and comparison of changepoint detection techniques for climate data [J].Journal of Applied Meteorology and Climatology, 46: 900-915.
[14]Solow A, 1987.Testing for climatic change: An application of the two phase regression model [J].Journal of Climate and Applied Meteorology, 26: 1401-1405.
[15]Szentimrey T, 1999.Multiple analysis of series for homogenization(MASH)[C]//Proceedings of the second seminar for homogenization of surface climatological data.WMO-TD No.962, WCDMP No.41.Budapest, Hungary: WMO, 27-46.
[16]Szentimrey T, 2003.Multiple analysis of series for homogenization (MASH), verification procedure for homogenized time series [C]//Fourth seminar for homogenization and quality control in climatological databases.WMO-TD No.1236, WCDMP No.56.Budapest, Hungary: WMO, 193-201.
[17]Turner J, Lachlan-Cope T A, Colwell S, et al, 2006.Significant warming of the Antarctic winter troposphere [J].Science, 311: 1914-1917.
[18]Vincent L A, 1998.A technique for the identification of inhomogeneities in Canadian temperature series [J].Journal of Climate, 11: 1094-1104.
[19]Wang X L, 2003.Comments on detection of undocumented changepoints: A revision of the two-phase regression model [J].Journal of Climate, 16: 3383-3385.
[20]Wang X L, 2006.Climatology and trends in some adverse and fair weather conditions in Canada, 1953 -2004 [J].Journal of Geophysical Research, 111.
[21]Wang X L, Wen Q H, Wu Y, 2007.Penalized maximal <i>t</i> test for detecting undocumented mean change in climate data series [J].Journal of Applied Meteorology and Climatology, 46 (6): 916-931.
[22]Wang X L, 2008.Accounting for autocorrelation in detecting mean-shifts in climate data series using the penalized maximal t or F test [J].Journal of Applied Meteorology and Climatology, 47: 2423-2444.
[23]WMO, 1999.Data format and supporting documentation for WMO members to use when providing digital historical data for GCOS surface network sites to the national climatic data center.
[24]Xu W H, Li Q X, Wang X L, et al, 2013.Homogenization of Chinese daily surface air temperatures and analysis of trends in the extreme temperature indices[J].Journal of Geophysical Research: Atmospheres, 118: 1-13.
[25]曹丽娟, 鞠晓慧, 刘小宁, 等, 2010.PMFT 方法对我国年平均风速的均一性检验[J].气象, 36(10): 53-57.
[26]曹丽娟, 严中伟, 2011.地面气候资料均一性研究进展[J].气候变化研究进展, 7(2): 129-135.
[27]陈少勇, 王劲松, 任燕, 等, 2011.近49年中国西北地区极端低温事件的演变特征[J].高原气象, 30(5): 1266-1273.
[28]高晓荣, 李庆祥, 董文杰, 2008.五台山站历史气候资料的均一性分析[J].气象科技, 36(1): 112-118.
[29]郭守生, 闫蓉, 李进虎, 等, 2016.互助站迁站前后气温序列均一性检验及订正[J].气象科技, 44(1): 31-35.
[30]韩海涛, 胡文超, 刘积林, 等, 2008.兰州站气候资料序列均一性的初步分析[J].干旱气象, 26(3): 34-38.
[31]黄群, 2007.中国近50年降水和湿度资料均一性检验及订正研究[D].南京: 南京信息工程大学.
[32]江志红, 黄群, 李庆祥, 2008.近50年中国降水序列均一性检验与订正研究[J].气候与环境研究, 13(1): 67-74.
[33]李庆祥, 刘小宁, 张洪政, 等, 2003.定点观测气候序列的均一性研究[J].气象科技, 31(1): 3-10.
[34]李庆祥, 张洪政, 刘小宁, 等, 2006.中国均一化历史气温数据集(1951-2004)(1.0 版) [DS].北京: 国家气象信息中心气象资料室.
[35]李庆祥, 董文杰, 李伟, 等, 2010.近百年中国气温变化中的不确定性估计[J].科学通报, 55(16): 1544-1554.
[36]李庆祥, 2011.气候资料均一性研究导论[M].北京: 气象出版社.
[37]李庆祥, 2016.我国气候资料均一性研究现状与展望[J].气象科技进展, 6 (3): 67-74.
[38]李祥余, 黄少鹏, 叶红, 等, 2010.厦门站气温非均一性订正及其变化特征对比分析[J].地理科学, 30(5): 798-801.
[39]李亚丽, 薛春芳, 卓静, 2016.利用台站元数据及卫星遥感资料分析影响气温序列均一性的原因[J].气象科技, 44(1): 23-30.
[40]吕越敏, 李宗省, 冯起, 等, 2019.近 60 年来祁连山极端气温变化研究[J].高原气象, 38( 5): 959- 970.DOI: 10.7522 /j.issn. 1000-0534.2018.00135.
[41]刘小宁, 孙安健, 1995.年降水量序列非均一性检验方法探讨[J].气象, 21 (8): 3-6.
[42]刘小宁, 2000.我国40年年平均风速的均一性检验[J].应用气象学报, 11(1): 27-34.
[43]马鹏里, 杨金虎, 卢国阳, 等, 2020.西北地区东部气候的转折性变化[J].高原气象, 39(6): 1-11.DOI: 10.7522/j.issn.1000-0534. 2019.00093.
[44]庞成, 王伏村, 陆卫荣, 等, 2013.甘肃张掖站新旧址气温对比观测资料分析[J].干旱气象, 31(2): 283-289.
[45]宋超辉, 孙安健, 1995a.非均一性气温气候序列订正方法的研究[J].高原气象, 14(2): 215-220.
[46]宋超辉, 刘小宁, 李集明, 1995b.气温序列非均一性检验方法的研究[J].应用气象学报, 6(3): 289-296.
[47]陶健红, 王遂缠, 王宝鉴, 2007.中国西北地区气温异常的特征分析[J].干旱区研究, 24(4): 510-515.
[48]田红, 王双五, 鲁俊, 2008.江淮流域年降水量和温度均一性检验[J].气象科学, 28(2): 227-231.
[49]王钰, 黄少平, 2008.江西省地面气象台站沿革及其对观测资料均一性的影响[J].气象与减灾研究, 31(4): 43-47.
[50]王秋香, 刘叶, 古丽格娜, 等, 2015.气象站迁站距离及海拔高差对新旧站资料差异的影响[J].沙漠与绿洲气象, 9(3): 1-6.
[51]魏娜, 孙娴, 姜创业, 等, 2012.台站迁移对陕西省气温资料均一性的影响及其偏差订正[J].气象, 38(12): 1532-153.
[52]吴增祥, 2005.气象台站历史沿革信息及其对观测资料序列均一性影响的初步分析[J].应用气象学报, 16(4): 461-467.
[53]徐琼芳, 高庆九, 胡进甫, 等, 2011.潜江站迁站前后气候资料的均一性检验[J].高原气象, 30(6): 1709-1715.
[54]徐影, 丁一汇, 赵宗慈, 2003.人类活动引起的我国西北地区21世纪温度和降水变化情景分析[J].冰川冻土, 25(3): 328-330.
[55]赵传成, 王雁, 丁永建, 等, 2011.西北地区近50年气温及降水的时空变化[J].高原气象, 30(2): 385-390.
[56]赵宗慈, 丁一汇, 徐影, 等, 2003.人类活动对20世纪中国西北地区气候变化影响检测和21世纪预测[J].气候与环境研究, 8(1): 26-34.
[57]张雪芹, 孙杨, 毛炜峄, 等, 2010.中国干旱区气温变化对全球变暖的区域响应[J].干旱区研究, 27(4): 592-599.
[58]张高杰, 曹丽娟, 李亚丽, 2013.均一性对西北五省气温变化特征影响分析[J].农业灾害研究, 3(2/3): 27-32.
[59]张天峰, 王位泰, 姜惠峰, 等, 2014.台站迁移对甘肃省气温记录均一性影响的检验[J].成都信息工程学院学报, 29(1): 104-109.
[60]张智, 林莉, 周红, 2014.宁夏地面气象台站元数据变化特点及质量评估[J].气象科技, 42(2): 219-224.
[61]张弦, 吴必文, 严平, 等, 2009.合肥气象站迁址对气温观测的影响[J].安徽农学通报, 15(3): 67-68.
[62]周建平, 孙照渤, 倪东鸿, 等, 2013.中国气象台站迁移对年平均气温均一性的影响[J].大气科学学报, 36(2): 139-146.