利用2004 -2017年静止气象卫星Kalpana-1的高分辨率(空间分辨率0.25°×0.25°, 时间分辨3 h一次, 每天8个时次)射出长波辐射(Outgoing Longwave Radiation, OLR)资料, 分析了青藏高原和南亚地区夏季对流的日变化特征, 并结合ERA-Interim分析资料和中国常规降水观测资料对2006年和2007年的对流活动异常、 垂直速度异常、 降水异常三者的联系进行研究。结果表明: (1)青藏高原和南亚地区夏季6 -9月有非常明显的对流活动, 其中在对流活动最强的盛夏7 -8月, 青藏高原中部和东南部、 印度半岛东北部、 孟加拉湾到中南半岛都有大范围的强对流区, 强度最强的对流区OLR平均最小值低于190 W·m-2。(2)青藏高原和南亚地区对流活动日变化特征明显。其中青藏高原中南部、 青藏高原东南部、 印度半岛东北部和中南半岛南部地区都在09:00(世界时, 下同)左右开始出现OLR低于210 W·m-2的强对流区, 在12:00左右对流活动强度达到最强, 对流活动均可持续到次日凌晨。孟加拉湾东海岸全天都有明显的对流活动, 在09:00和21:00的2个时次达到最强。对比青藏高原、 南亚和孟加拉湾地区, 青藏高原中南部地区的对流日变化最为显著, 陆地区域对流日变化是一个周期, 而孟加拉湾东岸地区的日变化有两个周期。(3)对比分析2006年和2007年7 -8月青藏高原地区和中国西南地区的OLR异常变化与垂直速度和降水异常可以发现, 高分辨率的OLR负(正)距平表示的异常强(弱)对流与异常上升(下沉)运动及异常多(少)的降水三者之间密切相关, 可以用来表征青藏高原地区对流活动的变化特征, 以弥补其观测资料的不足。
Based on the high-resolution (the spatial resolution is 0.25°×0.25°, the temporal resolution is once every 3 hours, 8 times a day) outgoing longwave radiation (OLR) data of the geostationary meteorological satellite Kalpana-1 from 2004 to 2017, the characteristics of convection diurnal variations over the Qinghai-Xizang Plateau and South Asia area in summer are analyzed.Combined with ERA-Interim analysis data and the observed precipitation data in China, the relationship among convective activity anomaly, vertical velocity anomaly and precipitation anomaly in 2006 and 2007 is studied.The results show that: (1) In June to September of summer, especially from July to August, the severe convection mainly occurs in the central and southeastern Qinghai-Xizang Plateau, the northeastern Indian Peninsula, the Bay of Bengal and the Indochina Peninsula.Minimum value of mean OLR in the strongest convection area is less than 190 W·m-2.(2) The characteristics of convection diurnal variations over the Qinghai-Xizang Plateau and South Asia area are obvious.In the central-southern and the southeastern Qinghai-Xizang Plateau, the northeastern Indian Peninsula and the southern Indochina Peninsula, the strong convective areas with OLR below 210 W·m-2 begin to appear around 09:00 (UTC, the same as after), the strongest convective activity takes place at 12:00, and the convective activity can continue until the next morning.However, in the East Coast of the Bay of Bengal, the obvious convective activity occurs throughout the day and reaches its twice maximum at 09:00 and 21:00.Compared with convection diurnal variations over the Qinghai-Xizang Plateau, South Asia area and the Bay of Bengal, the land areas have one cycle one day, the East Coast of the Bay of Bengal has two cycles one day, and the strongest diurnal oscillation occurs in the central-southern Qinghai-Xizang Plateau.(3) A comparative analysis of OLR, vertical velocity and precipitation anomaly over the Qinghai-Xizang Plateau and Southwest China from July to August in 2006 and 2007 shows that negative (positive) anomaly of the high-resolution OLR indicates that the abnormal strong (weak) convection is closely related to the abnormal ascending (sinking) movement and the abnormal more (less) precipitation, which can be used to characterize the variation characteristics of convective activity over the Qinghai-Xizang Plateau and make up for the lack of observational data.
[1]Flohm H, 1968.Contributions to a meteorology of the Tibetan Highlands[J].Atmospheric Science Paper No.130.Corolado: Corolado state University.
[2]Mahakur M, Prabhu A, Sharma A K, al et, 2013.A high-resolution outgoing longwave radiation dataset from Kalpana-1 satellite during 2004-2012[J].Current Science, 105(8): 1124-1133.
[3]Nesbitt S W, Zipser E J, 2003.The diurnal cycle of rainfall and convective intensity according to three years of TRMM Measurements[J].Journal of Climate, 16(10): 1456-1475.
[4]Prasad K D, Bansod S D, 2000.Interannual variations of outgoing longwave radiation and Indian summer monsoon rainfall[J].International Journal of Climatology, 20(15): 1955-1964.
[5]Roe G H, 2005.Orographic Precipitation[J].Annual Review of Earth and Planetary Sciences, 33: 646-671.
[6]Singh R, Thapliyal P K, Kishtawal C M, al et, 2007.A new technique for estimating outgoing longwave radiation using infrared window and water vapor radiances from Kalpana very high resolution radiometer[J].Geophysical Research Letters, 34(23): 497-507.
[7]Srinivasan J, Smith G L, 1996.The role of heat fluxes and moist static energy in tropical convergence zones[J].Monthly Weather Review, 124(10): 2089-2099.
[8]Yanai M, Li C F, 1994.Mechanism of heating and the boundary layer over the Tibetan Plateau[J].Monthly Weather Review, 122(2): 305-323.
[9]Yang G Y, Slingo J, 2001.The diurnal cycle in the tropics[J].Monthly Weather Review, 129(4): 784-801.
[10]Yu R C, Xu Y P, Zhou T J, al et, 2007b.Relation between rainfall duration and diurnal cycle in the warm season precipitation over central eastern China[J].Geophysical Research Letters, 34(13): 173-180.
[11]Yu R C, Zhou T J, Xiong A Y, al et, 2007a.Diurnal variation of summer precipitation over contiguous China[J].Geophysical Research Letters, 34(1): 223-234.
[12]Zheng Y G, Chen J, Zhu P J, 2008.Climatological distribution and diurnal variation of mesoscale convective systems over China and its vicinity during summer[J].Chinese Science Bulletin, 53(10), 1574-1586.
[13]陈隆勋, 宋玉宽, 1999.从气象卫星资料揭示的青藏高原夏季对流云系的日变化[J].气象学报, 57(5): 549-560.
[14]傅抱璞, 1992.地形和海拔高度对降水的影响[J].地理学报, 59(4): 302-314.
[15]蒋尚城, 温士顿, 1989.长江流域旱涝的OLR特征[J].气象学报, 47(4): 479-483.
[16]康善福, 吴俊明, 1990.青藏高原OLR场的气候特征[J].高原气象, 9(1): 98-103.
[17]李博, 杨柳, 唐世浩, 2018.基于静止卫星的青藏高原及周边地区夏季对流的气候特征分析[J].气象学报, 76(6): 983-995.
[18]李强, 王秀明, 周国兵, 等, 2020.四川盆地西南低涡暴雨过程的短时强降水时空分布特征研究[J].高原气象, 39(5): 960-972.DOI: 10.7522/j.issn.1000-0534.2019.00096.
[19]李永华, 徐海明, 刘德, 2009.2006年夏季西南地区东部特大干旱及其大气环流异常[J].气象学报, 67(1): 122-132.
[20]刘黎平, 郑佳锋, 阮征, 等, 2015.2014年青藏高原云和降水多种雷达综合观测试验及云特征初步分析结果[J].气象学报, 73(4): 635-647.
[21]柳苗, 李栋梁, 2007.青藏高原东部雨季OLR与降水变化特征及相关分析[J].高原气象, 26(2): 249-256.
[22]毛江玉, 吴国雄, 2012.基于TRMM卫星资料揭示的亚洲季风区夏季降水日变化[J].中国科学(地球科学), 42(4): 564-576.
[23]沈沛丰, 张耀存, 2011.四川盆地夏季降水日变化的数值模拟[J].高原气象, 30(4): 860-868.
[24]许建伟, 高艳红, 彭保发,等, 2020.1979-2016年青藏高原降水的变化特征及成因分析[J].高原气象, 39(2): 234-244.DOI: 10.7522/j.issn.1000-0534.2019.00029.
[25]叶笃正, 高由禧, 1979.青藏高原气象学[M].北京: 科学出版社.
[26]原韦华, 宇如聪, 傅云飞, 2014.中国东部夏季持续性降水日变化在淮河南北的差异分析[J].地球物理学报, 57(3): 752-759.
[27]张宏芳, 潘留杰, 陈昊明, 等, 2020.秦岭及周边地区暖季降水日变化及其成因分析[J].高原气象, 39(5): 935-946.DOI: 10. 7522/j.issn.1000-0534.2019.00067.
[28]赵平, 袁溢, 2017.2014年7月14日高原低涡降水过程观测分析[J].应用气象学报, 28(5): 532-543.
[29]朱国富, 陈受钧, 1999.1995年夏季青藏高原上及其邻域的对流活动[J].高原气象, 18(1): 9-19.