论文

冷涡背景下东北地区短时强降水统计特征

  • 陈相甫 ,
  • 赵宇
展开
  • 南京信息工程大学气象灾害教育部重点实验室/气象灾害预报预警与评估协同创新中心/ 气候与环境变化国际合作联合实验室,江苏 南京 210044

收稿日期: 2020-06-16

  网络出版日期: 2021-06-28

基金资助

国家重点研发计划项目(2017YFC1502002);国家自然科学基金项目(41975055)

Statistical Analysis on Hourly Heavy Rainfall in Northeast China Induced by Cold Vortices

  • Xiangfu CHEN ,
  • Yu ZHAO
Expand
  • Key Laboratory of Meteorological Disaster,Ministry of Education/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/International Joint Laboratory on Climate and Environment Change,Nanjing University of Information Science & Technology,Nanjing 210044,Jiangsu,China

Received date: 2020-06-16

  Online published: 2021-06-28

摘要

利用2011 -2020年6 -8月全国2400个地面自动站观测的逐小时降水资料和常规观测, 结合美国NCEP/NCAR 1°×1°的6 h间隔再分析资料, 基于站点统计了冷涡背景下东北地区短时强降水的时空分布特征。然后着眼降水落区, 基于冷涡位置、 形状、 发展阶段以及与热带系统的相互作用等将冷涡短时强降水分为西北气流型、 纬向型、 南涡型、 副高型和经向型, 并讨论了5类短时强降水的对流参数特征。结果表明: 6月, 冷涡短时强降水多由中涡造成, 7月和8月主要由北涡引起。短时强降水主要发生在午后, 17:00(北京时)达到峰值。冷涡短时强降水高频区位于辽宁, 次高频区位于吉林中部、 黑龙江中西部和东北部。不同类型的短时强降水, 其降水落区在冷涡不同发展阶段有所差异。冷涡短时强降水发生在条件不稳定的大气中, 西北气流型、 纬向型和经向型短时强降水的850 hPa与500 hPa温差一般大于25 ℃; 副高型和南涡型短时强降水的850 hPa与500 hPa温差一般小于24 ℃, 但地面露点和可降水量明显比其他3类大。5类短时强降水的对流有效位能一般不超过1500 J·kg-1。大多数情况下, 副高型短时强降水发生在中等强度的垂直风切变环境中, 其他4类发生在弱的垂直风切变环境中。

本文引用格式

陈相甫 , 赵宇 . 冷涡背景下东北地区短时强降水统计特征[J]. 高原气象, 2021 , 40(3) : 510 -524 . DOI: 10.7522/j.issn.1000-0534.2020.00092

Abstract

By using hourly precipitation observation of automated weather stations, conventional observation and NCEP/NCAR 1°×1° reanalysis data from June to August during 2011 -2020, a statistical analysis of the spatiotemporal characteristics of hourly heavy rainfall events caused by cold vortices in Northeast China was performed.Focusing on locations of rainfall, the hourly heavy rainfall events were classified into northwest airflow type (NW), zonal type (ZT), south vortex type (SV), subtropical high type (SH) and meridional type (MT) based on the position, shape and development stage of cold vortices as well as interaction with tropical systems.In addition, the features of convection parameters of these five types were studied.Results show that induced mostly by middle vortices in June, hourly heavy rainfall events were mainly caused by north vortices in July and August.The hourly heavy rainfall often occurred in the afternoon, reaching the peak at 17:00 (Beijing Time).In the spatial distribution, the high frequency area of hourly heavy rainfall was situated in Liaoning Province, while the sub-high frequency area was located in the central Jilin Province and central-western and north-eastern Heilongjiang Province.The precipitation locations had differences not only in different types but also in phases of evolution of cold vortices.Moreover, hourly heavy rainfall events usually appeared in the conditional instability atmosphere.The temperature difference of NW, ZT and MT between 850 hPa and 500 hPa exceeded 25 ℃, while those of SH and SV were less than 24 ℃ with higher dew point and larger precipitable water.The convective available energy of all types were relatively moderate, mostly less than 1500 J·kg-1.In most situation, the hourly heavy rainfall events of SH happened under moderate vertical wind shear, while others generally appeared in the environment with weak vertical wind shear.

参考文献

[1]Hu K X, Lu R Y, Wang D H, 2010.Seasonal climatology of cut-off lows and associated precipitation patterns over Northeast China[J].Meteorology and Atmospheric Physics, 106(1/2): 37-48.
[2]Johns R H, Doswell C A, 1992.Severe Local Storms Forecasting[J].Weather and Forecasting, 7(4): 588-612.
[3]Xie Z W, Bueh C L, 2015.Different types of cold vortex circulations over Northeast China and their weather impacts[J].Monthly Weather Review, 143(3): 845-863.
[4]Zhang C, Zhang Q, Wang Y, al et, 2008.Climatology of warm season cold vortices in East Asia: 1979-2005[J].Meteorology and Atmospheric Physics, 100(1/4): 291-301.
[5]白人海, 孙永罡, 1997.东北冷涡中尺度天气的背景分析[J].黑龙江气象(3): 6-12.
[6]蔡雪薇, 谌芸, 沈新勇, 等, 2018.冷涡对两类对流系统结构演变作用的个例模拟对比分析[J].气象, 44(6): 790-801.DOI: 10. 7519/j.issn.1000-0526.2018.06.007.
[7]蔡雪薇, 谌芸, 沈新勇, 等, 2019.冷涡背景下不同类型强对流天气的成因对比分析[J].气象, 45(5): 621-631.DOI: 10.7519/j.issn.1000-0526.2019.05.003.
[8]陈元昭, 俞小鼎, 陈训来, 2016.珠江三角洲地区重大短时强降水的基本流型与环境参量特征[J].气象, 42(2): 144-155.DOI: 10.7519/j.issn.1000-0526.2016.02.002.
[9]谌芸, 孙军, 徐珺, 等, 2012.北京721特大暴雨极端性分析及思考(一)观测分析及思考[J].气象, 38(10): 1255-1266.
[10]高晓梅, 俞小鼎, 王令军, 等, 2018.鲁中地区分类强对流天气环境参量特征分析[J].气象学报, 76(2): 196-212.DOI: 10.1 1676/qxxb2018.006.
[11]何晗, 谌芸, 肖天贵, 等, 2015.冷涡背景下短时强降水的统计分析[J].气象, 41(12): 1466-1476.DOI: 10.7519/j.issn.1000-0526. 2015.12.004.
[12]李爽, 丁治英, 戴萍, 等, 2016.东北冷涡的最新研究进展[J].干旱气象, 34(1): 13-19.DOI: 10.11755/j.issn.1006-7639.2016. 01.0013.
[13]李爽, 丁治英, 刘云桦, 等, 2017.东北冷涡下辽宁省短时强降水统计与合成分析[J].气象科学, 37(1): 70-77.DOI: 10.3969/2016jms.0018.
[14]李建, 宇如聪, 王建捷, 2008.北京市夏季降水的日变化特征[J].科学通报, 53(7): 829-832.
[15]刘英, 王东海, 张中锋, 等, 2012.东北冷涡的结构及其演变特征的个例综合分析[J].气象学报, 70(3): 354-370.
[16]齐铎, 袁美英, 周奕含, 等, 2020.一次东北冷涡过程的结构特征与降水关系分析[J].高原气象, 39(4): 808-818.DOI: 10.7522/j.issn.1000-0534.2019.00078.
[17]沈浩, 杨军, 祖繁, 等, 2014.干空气入侵对东北冷涡降水发展的影响[J].气象, 40(5): 562-569.DOI: 10.7519/j.issn.1000-0526. 2014.05.006.
[18]孙力, 郑秀雅, 王琪, 1994.东北冷涡的时空分布特征及其与东亚大型环流系统之间的关系[J].应用气象学报, 5(3): 298-303.
[19]孙力, 1997.东北冷涡持续活动的分析研究[J].大气科学, 21(3): 297-307.
[20]孙颖姝, 王咏青, 沈新勇, 等, 2018.一次“大气河”背景下东北冷涡暴雨的诊断分析[J].高原气象, 37(4): 970-980.DOI: 10. 7522/j.issn.1000-0534.2018.00005.
[21]孙继松, 戴建华, 何立富, 等, 2014.强对流天气预报的基本原理与预报方法[M].北京: 气象出版社, 49-50.
[22]斯琴, 荀学义, 王佳津, 等, 2016.一次东北冷涡暴雨过程成因分析[J].气象科技, 44(6): 1016-1023.DOI: 10.3969/j.issn.1671-6345.2016.06.025.
[23]王磊, 谌芸, 张仙, 等, 2013.冷涡背景下MCS的统计分析[J].气象, 39(11): 1385-1392.DOI: 10.7519/j.issn.1000-0526.2013. 11.001.
[24]徐红, 晁华, 王文, 等, 2016.东北冷涡暴雨落区统计与诊断分析[J].气象与环境学报, 32(3): 41-46.DOI: 10.3969/j.issn. 1673-503X.2016.03.006.
[25]杨晓宇, 刘丽敏, 凌宏伟, 2018.伊春地区东北冷涡型短时强降水天气雷达特征及临近预警[J].黑龙江气象, 35(3): 15-16.DOI: 10.1402/j.cnki.hljqx.2018.03.006.
[26]杨雪艳, 秦玉琳, 张梦远, 等, 2018.基于“配料法”的东北冷涡暴雨预报研究[J].大气科学学报, 41(4): 475-482.DOI: 10.13878/j. cnki.dqkxxb.20171116001.
[27]郁珍艳, 何立富, 范广洲, 等, 2011.华北冷涡背景下强对流天气的基本特征分析[J].热带气象学报, 27(1): 91-96.DOI: 10. 3969/j.issn.1004-4965.2011.01.010.
[28]俞小鼎, 周小刚, 王秀明, 2012.雷暴与强对流临近天气预报技术进展[J].气象学报, 70(3): 311-337.DOI: 10.11676/qxxb2012.030.
[29]应爽, 袁大宇, 李尚锋, 2014.一次东北冷涡不同阶段强对流天气特征对比分析[J].气象与环境学报, 30(4): 9-18.DOI: 10. 3969/j.issn.1673-503X.2014.04.002.
[30]宇如聪, 李建, 陈昊明, 等, 2014.中国大陆降水日变化进展[J].气象学报, 72(5): 949-968.DOI: 10.11676/qxxb2014.047.
[31]张立祥, 李泽椿, 2009.东北冷涡研究概述[J].气候与环境研究, 14(2): 218-228.DOI: 10.3878/j.issn.1006-9585.2009.02.11.
[32]张立祥, 2008.东北冷涡中尺度对流系统研究[D].南京: 南京信息工程大学, 1-92.
[33]张弛, 王咏青, 廖玥, 等, 2019.初始场与云微物理参数方案在飑线数值模拟中的对比研究[J].高原气象, 38 (2): 410-420.DOI: 10.7522/j.issn.1000-0534.2018.00084.
[34]张桂莲, 常欣, 黄晓璐, 等, 2018.东北冷涡背景下超级单体风暴环境条件与雷达回波特征[J].高原气象, 37(5): 1364-1374.DOI: 10.7522/j.issn.1000-0534.2018.00068.
[35]张云, 雷恒池, 钱贞成, 2008.一次东北冷涡衰退阶段暴雨成因分析[J].大气科学, 32(3): 481-498.
[36]钟水新, 2011.东北冷涡结构特征及其强降水形成机理研究[D].北京: 中国气象科学研究院, 1-129.
文章导航

/