论文

西南涡引发的强对流天气特征

  • 刘金卿 ,
  • 刘红武 ,
  • 徐靖宇
展开
  • <sup>1.</sup>湖南省气象台,湖南 长沙 410118;<sup>2.</sup>高原与盆地暴雨旱涝灾害四川省重点实验室,四川 成都 610072;<sup>3.</sup>中国气象局广州热带海洋气象研究所/广东省区域数值天气预报重点实验室,广东 广州 510641;<sup>4.</sup>气象防灾减灾湖南省重点实验室,湖南 长沙 410118

收稿日期: 2019-12-06

  网络出版日期: 2021-06-28

基金资助

高原与盆地暴雨旱涝灾害四川省重点实验室开放研究基金项目(SZKT202005);中国气象局/广东省区域数值天气预报重点实验室开放基金项目(J202009);国家自然科学基金项目(41176005);中国气象局气象预报业务关键技术发展专项(YBGJXM(2017)1A-10);中国气象局创新发展专项(CXFZ2021J20);湖南省科技厅重点领域研发计划项目(2019SK2161)

Analysis on Strong Convective Weather Triggered by Southwest Vortex

  • Jinqing LIU ,
  • Hongwu LIU ,
  • Jingyu XU
Expand
  • <sup>1.</sup>Hunan Meteorological Observatory,Changsha 410118,Hunan,China;<sup>2.</sup>Heavy Rain and Drought Flood Disasters in Plateau and Basin Key Laboratory of Sichuan,Chengdu 610072,Sichuan,China;<sup>3.</sup>Institute of Tropical and Marine Meteorology/Guangdong Provincial Key Laboratory of Regional Numerical Weather Prediction,CMA,Guangzhou 510641,Guangdong,China;<sup>4.</sup>Hunan Key Laboratory of Meteorological Disaster Prevention and Mitigation,Changsha 410118,Hunan,China

Received date: 2019-12-06

  Online published: 2021-06-28

摘要

为提高对西南涡强对流天气特征的深入理解, 更好地研究其临近预报与预警方法, 利用2014 -2017年西南低涡年鉴资料、 全国2400余个国家级气象台站逐小时观测数据、 国家地基闪电监测资料、 危险天气报、 欧洲中心ERA-Interim再分析资料, 统计分析了西南涡发生发展过程中引发的强对流天气特征和强降水天气形势, 并定量诊断了不同移动路径的西南涡强降水在动力学和热力学条件方面的异同点。结果表明: (1)约四分之一西南涡会引发强对流天气, 强对流落区主要位于西南涡东南象限, 类型以短时强降水为主, 强度集中分布在22~32 mm·h-1。这是由于西南涡东南象限和西南气流耦合相互作用带来高温高湿平流, 容易引发对流不稳定并产生对流性降水。(2)西南涡强降水集中在春、夏季, 移出源地的西南涡(约五分之二)比准静止类(约五分之一)更容易引发强降水, 其中春季几乎只有移出源地的西南涡会触发强降水, 这与移出源地的西南涡暖湿气流和水汽输送更加旺盛有关。(3)准静止类西南涡比移动类西南涡雨强更强, 这可能是因为移动类垂直风切变更强, 不利于高效降水。

本文引用格式

刘金卿 , 刘红武 , 徐靖宇 . 西南涡引发的强对流天气特征[J]. 高原气象, 2021 , 40(3) : 525 -534 . DOI: 10.7522/j.issn.1000-0534.2020.00027

Abstract

In order to improve the understanding of the strong convective weather triggered by Southwest Vortex (SWV) and better study its forecasting and early warning methods.Based on Southwest China Vortex Yearbook, national meteorological station observation data, ground-based lightning data, dangerous weather reports and ERA-Interim reanalysis data during 2014 -2017, the characteristics of strong convective weather and weather situation of severe precipitation caused by SWV are investigated.Similarities and differences in dynamics and thermodynamic of SWV severe precipitation with different moving paths are further analyzed.The results show that: (1) About a quarter of SWV would cause strong convective weather and strong convection fall area was mainly located in the southeast quadrant.The type was mainly short-time severe precipitation with intensity concentrated in 22~32 mm·h-1.This was due to coupling and interaction between the southeast quadrant of SWV and the southwest flow brought strong advection of high temperature and humidity, which easily caused convective instability and convective precipitation.(2) SWV severe precipitation was concentrated in spring and summer, and moving SWV (about two fifths) was more likely to cause precipitation than quasi-stationary (about one fifth), but only the moving SWV would trigger severe precipitation in spring, which was related to the more vigorous warm moisture airflow and water vapor transport.(3) The precipitation intensity of quasi-stationary SWV was stronger than moving SWV, which may be due to the stronger vertical wind shear of moving SWV, which was not conducive to efficient precipitation.(4) Although SWV was frequent in autumn and winter, the threat of triggering strong convective weather was small.The moving SWV in spring and all SWV of different path in summer were more likely to cause strong convective weather, and attention should be paid to the severe precipitation that may occur in southeast quadrant within 450 km.

参考文献

[1]Bijlsma S J, Hafkenscheid L M, Lynch P, 1986.Computation of the streamfunction and velocity potential and reconstruction of the wind field[J].Monthly Weather Review, 1986.DOI: https: //doi.org/10.1175/1520-0493(1986)114<1547: COTSAV>2.0.CO; 2.
[2]Feng X Y, Liu C H, Fan G Z, al et, 2016.Climatology and structures of southwest vortices in the NCEP Climate Forecast System Reanalysis[J].Journal of Climate, 29(21): 7675-7701.DOI: 10.1175/JCLI-D-15-0813.1.
[3]Fu S M, Sun J H, Zhao S X, al et, 2011.The energy budget of a southwest vortex with heavy rainfall over South China[J].Advances in Atmospheric Sciences, 28(3): 709-724.DOI: 10. 1007/s00376-010-0026-z.
[4]Fu S M, Zhang J P, Sun J H, al et, 2014.A fourteen-year climatology of the southwest vortex in summer[J].Atmospheric and Oceanic Science Letters, 7(6): 510-514.DOI: 10.3878/AOSL20140047.
[5]Yu S H, Gao W L, Xiao D X, al et, 2016.Observational facts regarding the joint activities of the southwest vortex and plateau vortex after its departure from the Tibetan Plateau[J].Advances in Atmospheric Sciences, 33(1): 34-46.DOI: 10.1007/s00376-015-5039-1.
[6]崔恒立, 王东仙, 吴梦雯, 等, 2018.一次西南涡暴雨的位涡分析[J].气象科技进展, 8(4): 102-108.DOI: 0.3969/j.issn.2095-1973.2018.04.013.
[7]陈贵川, 谌芸, 王晓芳, 等, 2018.一次冷性停滞型西南低涡结构的演变特征[J].高原气象, 37(6): 1628-1642.DOI: 10.7522/j.issn.1000-0534.2018.00093.
[8]陈涛, 张芳华, 端义宏, 2011.广西“6·12”特大暴雨中西南涡与中尺度对流系统发展的相互关系研究[J].气象学报, 69(3): 472-485.DOI: 10.11676/qxxb2011.041.
[9]方从羲, 李子良, 2016.一次西南涡致洪暴雨天气过程诊断分析和数值模拟试验[J].中国海洋大学学报(自然科学版), 46(5): 14-21.DOI: 10.16441/j.cnki.hdxb.20150319.
[10]高守亭, 周玉淑, 2019.近年来中尺度涡动力学研究进展[J].暴雨灾害, 38(5): 431-439.DOI: 10.3969/j.issn.1004-9045. 2019. 05.005.
[11]高晓梅, 俞小鼎, 王令军, 等, 2018.鲁中地区分类强对流天气环境参量特征分析[J].气象学报, 76(2): 30-46.DOI: 0.11676/qxxb2018.006.
[12]郭瀚阳, 陈明轩, 韩雷, 等, 2019.基于深度学习的强对流高分辨率临近预报试验[J].气象学报, 77(4): 715-727.DOI: 10. 11676/qxxb2019.036.
[13]蒋璐君, 李国平, 王兴涛, 2015.基于TRMM资料的高原涡与西南涡引发强降水的对比研究[J].大气科学, 39(2): 249-259.DOI: 10.3878/j.issn.1006-9895.1407.13260.
[14]刘金卿, 李子良, 2020.一次西南涡诱生气旋引发的湖南大暴雨个例分析[J].高原气象, 39(2): 311-320.DOI: 10.7522/j.issn. 1000-0534.2019.00028.
[15]李跃清, 徐祥德, 2016.西南涡研究和观测试验回顾及进展[J].气象科技进展, 6(3): 134-140.DOI: 10.3969/j.issn.2095-1973.2016.03.018.
[16]师春香, 潘旸, 谷军霞, 等, 2019.多源气象数据融合格点实况产品研制进展[J].气象学报, 77(4): 774-783.DOI: 10.11676/qxxb2019.043.
[17]孙超, 霍庆, 任芝花, 等, 2018.地面气象资料统计处理系统设计与实现[J].应用气象学报, 29(5): 120-130.DOI: 10.11898/1001-7313.20180511.
[18]孙继松, 陶祖钰, 2012.强对流天气分析与预报中的若干基本问题[J].气象, 38(2): 164-173.DOI: 10.7519/j.issn.1000-0526. 2012.2.004
[19]孙继松, 2017.短时强降水和暴雨的区别与联系[J].暴雨灾害, 36(6): 498-506.DOI: 10.3969/j.issn.1004-9045.2017.06.002.
[20]王梦晓, 王瑞, 傅云飞, 2019.利用TRMM PR和IGRA探测分析的拉萨降水云内大气温湿廓线特征[J].高原气象, 38(3): 539-551.DOI: 10.7522/j.issn.1000-0534.2019.00011.
[21]王秀明, 俞小鼎, 2019.热带一次致灾龙卷形成物理过程研究[J].气象学报, 77(3): 387-404.DOI: 10.11676/qxxb2019.031.
[22]许爱华, 孙继松, 许东蓓, 等, 2014.中国中东部强对流天气的天气形势分类和基本要素配置特征[J].气象, 40(4): 400-411.DOI: 10.7519/j.issn.1000-0526.2014.04.002.
[23]杨波, 郑永光, 蓝渝, 等, 2017.国家级强对流天气综合业务支撑体系建设[J].气象, 43(7): 845-855.DOI: 10.7519/j.issn.1000-0526.2017.07.008.
[24]杨波, 王园香, 蔡雪薇, 2019.我国华南江南春季雷暴气候特征分析[J].热带气象学报, 35(4): 470-479.DOI: 1004-4965(2019)04-0470-10.
[25]杨璐, 陈敏, 陈明轩, 等, 2019.高时空分辨率三维风场在强对流天气临近预报中的融合应用研究[J].气象学报, 77(2): 243-255.DOI: 10.11676/qxxb2019.010.
[26]赵芳, 熊安元, 张小缨, 等, 2017.全国综合气象信息共享平台架构设计技术特征[J].应用气象学报, 28(6): 112-120.DOI: 10. 11898/1001-7313.20170610.
[27]张小玲, 杨波, 盛杰, 等, 2018.中国强对流天气预报业务发展[J].气象科技进展, 8(3): 8-18.DOI: 10.3969/j.issn.2095-1973. 2018.03.001.
[28]张涛, 蓝渝, 毛冬艳, 等, 2013.国家级中尺度天气分析业务技术进展I: 对流天气环境场分析业务技术规范的改进与产品集成系统支撑技术.气象, 39(7): 894-900.DOI: 10.7519/j.issn. 1000-0526.2013.07.010.
[29]张文海, 李磊, 2019.人工智能在冰雹识别及临近预报中的初步应用[J].气象学报, 77(2): 282-291.DOI: 10.11676/qxxb2019.014.
[30]朱月佳, 邢蕊, 朱明佳, 等, 2019.联合概率方法在安徽强对流潜势预报中的应用和检验[J], 34(7): 731-746, 地球科学进展.DOI: 10.11867/j.issn.1001-8166.2019.07.0731.
[31]朱杰, 2018.星地闪电探测系统在中国区域探测数据对比分析[J].地球物理学进展, 33(2): 541-546.DOI: 10.6038/pg2018AA0631.
[32]郑永光, 周康辉, 盛杰, 等, 2015.强对流天气监测预报预警技术进展[J].应用气象学报, 26(6): 641-657.DOI: 10.11898/1001-7313.20150601.
[33]曾智琳, 谌芸, 朱克云, 等, 2019.广东省大冰雹事件的层结特征与融化效应[J].大气科学, 43(3): 598-617.DOI: 10.3878/j.issn.1006-9895.1808.18152.
[34]周玉淑, 颜玲, 吴天贻, 等, 2019.高原涡和西南涡影响的两次四川暴雨过程的对比分析[J].大气科学, 43(4): 813-830.DOI: 10.3878/j.issn.1006-9895.1807.18147.
[35]周玉淑, 曹洁, 高守亭, 2008.有限区域风场分解方法及其在台风SAOMEI研究中的应用[J].物理学报, 57(10): 6654-6665.DOI: 10.3321/j.issn: 1000-3290.2008.10.095.
[36]中国气象局成都高原气象研究所和中国气象学会高原气象学委员会, 2016a.西南低涡年鉴2014[M].北京: 科学出版社.
[37]中国气象局成都高原气象研究所和中国气象学会高原气象学委员会, 2016b.西南低涡年鉴2015[M].北京: 科学出版社.
[38]中国气象局成都高原气象研究所和中国气象学会高原气象学委员会, 2017.西南低涡年鉴2016[M].北京: 科学出版社.
[39]中国气象局成都高原气象研究所和中国气象学会高原气象学委员会, 2019.西南低涡年鉴2017[M].北京: 科学出版社.
文章导航

/