论文

基于BCC-CSM2-MR模式的疏勒河流域未来气温降水变化趋势分析

  • 李雅培 ,
  • 朱睿 ,
  • 刘涛 ,
  • 常亚斌 ,
  • 尹振良
展开
  • <sup>1.</sup>兰州交通大学测绘与地理信息学院,甘肃 兰州 730070;<sup>2.</sup>地理国情监测技术应用国家地方联合工程研究中心,甘肃 兰州 730070;<sup>3.</sup>甘肃省地理国情监测工程实验室,甘肃 兰州 730070;<sup>4.</sup>中国科学院西北生态环境资源研究院,内陆河流域生态水文重点实验室,甘肃 兰州 730000

收稿日期: 2020-07-24

  网络出版日期: 2021-06-28

基金资助

国家重点研发计划项目(2017YFC0404302);国家自然科学基金项目(41761088);兰州交通大学优秀平台支持项目(201806)

Trend Analysis of Future Temperature and Precipitation in Shule River Basin based on BCC-CSM2-MR Model

  • Yapei LI ,
  • Rui ZHU ,
  • Tao LIU ,
  • Yabin CHANG ,
  • Zhenliang YIN
Expand
  • <sup>1.</sup>Faculty of Geomatics,Lanzhou Jiaotong University,Lanzhou 730070,Gansu,China;<sup>2.</sup>Nationl-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring,Lanzhou 730070,Gansu,China;<sup>3.</sup>Gansu Provincial Engineering Laboratory for National Geographic State Monitoring,Lanzhou 730070,Gansu,China;<sup>4.</sup>Northwest institute of Eco-Environment and Resources,Chinese Academy of Sciences Key laboratory of Eco-hydrology of Inland River Basin,Chinese Academy of Sciences,Lanzhou 730070,Gansu,China

Received date: 2020-07-24

  Online published: 2021-06-28

摘要

疏勒河是河西走廊三大内陆河之一, 该区生态环境和水资源易受气候变化影响, 对该区未来气温降水变化趋势进行分析研究, 有助于厘清疏勒河流域未来气候变化状况, 为气候变化风险评估提供参考。本文基于1961 -2014年气温降水数据及中等分辨率气候模式BCC-CSM2-MR输出数据(1961 -2100年), 采用MBC(Multivariate Bias Correction)方法对模式输出数据进行偏差校正, 并利用趋势分析及空间插值分析等方法, 对疏勒河流域气温和降水变化趋势进行研究。结果表明: (1)历史时期(1961 -2014年), 经MBC方法校正后的模式输出数据, 与实测数据的拟合程度较好, 能较好地再现研究区分布规律; (2)不同气候变化情景(SSP1-2.6、 SSP2-4.5、 SSP3-7.0、 SSP5-8.5)在未来时期(2015 -2100年)下, 模式数据的降水增加量的比较为SSP5-8.5>SSP3-7.0>SSP2-4.5>SSP1-2.6, 平均温度增加量的比较为SSP5-8.5>SSP3-7.0>SSP2-4.5>SSP1-2.6, 最高温的增加量比较为SSP5-8.5>SSP3-7.0>SSP2-4.5>SSP1-2.6, 最低温度增加量比较为SSP5-8.5>SSP1-2.6>SSP2-4.5>SSP3-7.0; (3)未来时期(2015 -2100年)的三个时段(2015 -2040年、 2041 -2070年、 2071 -2100年)的变化特征表明, 在2015 -2040年和2041 -2070年期间的降水减少的幅度较明显, 而温度有增有减, 变化幅度较大, 呈现震荡的趋势。而在2071 -2100年期间温度和降水有了明显的变化, 且呈现高速增长的趋势; (4)未来时期的降水变化率呈现中部高, 四周低的趋势; 而平均温度变化量的高值区为流域水系稀疏地区; 最高温度变化最明显的区域集中在疏勒河流域的上游区; 最低温度变化最明显的区域集中在研究区的南北两端。

本文引用格式

李雅培 , 朱睿 , 刘涛 , 常亚斌 , 尹振良 . 基于BCC-CSM2-MR模式的疏勒河流域未来气温降水变化趋势分析[J]. 高原气象, 2021 , 40(3) : 535 -546 . DOI: 10.7522/j.issn.1000-0534.2020.00078

Abstract

The Shule River is one of the three major inland rivers in the Hexi Corridor.The ecological environment and water resources in the area are vulnerable to climate change.The analysis and research on the future temperature and precipitation trends in the area will help to clarify future climate changes in the Shule River Basin.The status provides a reference for climate change risk assessment.Based on the temperature and precipitation data from 1961 to 2014 and the output data of the medium-resolution climate model BCC-CSM2-MR (1961 -2100), this paper uses the MBC (Multivariate Bias Correction) method to correct the model output data, in which trend analysis and spatial interpolation analysis as well as other methods are used to study the variation trend of temperature and precipitation in the Shule River Basin.The results show that: (1) In the historical period (1961 -2014), the model output data corrected by the MBC method, except for very few months, fits well with the observed value.In terms of spatial distribution, the model output data can also roughly reproduce the distribution law of the study area; (2) In different climate change scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5) in the future period (2015 -2100), The comparison result of precipitation increase of model output data is SSP5-8.5>SSP3-7.0>SSP2-4.5>SSP1-2.6, the comparison result of the average temperature increase of model output data is SSP5-8.5>SSP3-7.0>SSP2-4.5>SSP1-2.6, and the maximum temperature increase of model output data is SSP5 -8.5>SSP3-7.0>SSP2-4.5>SSP1-2.6, the minimum temperature increase of model output data is SSP5-8.5>SSP1-2.6>SSP2-4.5>SSP3-7.0; (3) The change characteristics of the three periods (2015 -2040, 2041 -2070, and 2071 -2100) in the future period (2015 -2100) show that the precipitation in the period 2015 -2040 and 2041 -2070 will drastically decrease, while the temperature has increased and decreased, and the range of change is large, showing a trend of oscillation.During the period from 2071 -2100, the temperature and precipitation have changed abruptly and showed a trend of rapid growth; (4) The precipitation change rate in the future period will show a trend of high in the middle and low in the surrounding area; and the high value of the average temperature change is concentrated in the sparse water system areas of the Shule River Basin; the areas with the most obvious changes in the maximum temperature are concentrated in the upper reaches of the Shule River Basin; the areas with the most obvious minimum temperature changes are concentrated in the north and south ends of the Shule River Basin.

参考文献

[1]Akinsanola A A, Kooperman G J, Pendergrass A G, al et, 2020.Seasonal representation of extreme precipitation indices over the United States in CMIP6 present-day simulations[J].Environmental Research Letters, 15(9): 094003.DOI: 10.1088/1748-9326/ab92c1.
[2]Bracegirdle T J, Krinner G, Tonelli M, al et, 2020.Twenty first century changes in Antarctic and Southern Ocean surface climate in CMIP6[J].Atmospheric Science Letters, 21(9): e984.DOI: 10.1002/asl.984.
[3]Eyring V, Bony S, Meehl G A, al et, 2016.Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization[J].Geoscientific Model Development, 9: 1937-1958.DOI: 10.5194/gmd-9-1937-2016.
[4]Ghosh K G, 2018.Analysis of rainfall trends and its spatial patterns during the last century over the Gangetic West Bengal, Eastern India[J].Journal of Geovisualization and Spatial Analysis, 2(2): 15.DOI: 10.1007/s41651-018-0022-x.
[5]Huang Y Y, Yan Q W, Zhang C R, 2018.Spatial–temporal distribution characteristics of PM 2.5 in China in 2016[J].Journal of Geovisualization and Spatial Analysis, 2(2): 12.DOI: 10.1007/s41651-018-0019-5.
[6]Mehrotra R, Sharma A, 2015.Correcting for systematic biases in multiple raw GCM variables across a range of timescales[J].Journal of Hydrology, 520: 214-223.DOI: 10.1016/j.jhydrol.2014. 11.037.
[7]Mehrotra R, Sharma A, 2016.A multivariate quantile-matching bias correction approach with auto-and cross-dependence across multiple time scales: implications for downscaling[J].Journal of Climate, 29(10): 3519-3539.DOI: 10.1175/JCLI-D-15-0356.1.
[8]Mehrotra R, Johnson F, Sharma A, 2018.A software toolkit for correcting systematic biases in climate model simulations[J].Environmental Modelling & Software, 104: 130-152.DOI: 10.1016/j.envsoft.2018.02.010.
[9]Pegram G G S, 2009.A nested multisite daily rainfall stochastic generation model[J].Journal of Hydrology, 371(1/4): 142-153.DOI: 10.1016/j.jhydrol.2009.03.025.
[10]Salas J D, Tabios III G Q, Bartolini P, 1985.Approaches to multivariate modeling of water resources time series 1[J].JAWRA Journal of the American Water Resources Association, 21(4): 683-708.DOI: 10.1111/j.1752-1688.1985.tb05383.x.
[11]Sarhadi A, Burn D H, Johnson F, al et, 2016.Water resources climate change projections using supervised nonlinear and multivariate soft computing techniques[J].Journal of Hydrology, 536: 119-132.DOI: 10.1016/j.jhydrol.2016.02.040.
[12]Seneviratne S I, Hauser M, 2020.Regional climate sensitivity of climate extremes in CMIP6 vs CMIP5 multi‐model ensembles[J].Earth's Future.8: e2019EF001474.DOI: 10.1029/2019EF001474.
[13]Wu T W, Lu Y X, Fang Y J, al et, 2019.The Beijing Climate Center climate system model (BCC-CSM): The main progress from CMIP5 to CMIP6[J].Geoscientific Model Development, 12: 1573-1600.DOI: 10.5194/gmd-12-1573-2019.
[14]Yin Z L, Feng Q, Yang LS, al et, 2020.Projected spatial patterns in precipitation and air temperature for China's northwest region derived from high-resolution regional climate models[J].International Journal of Climatology, 40: 3922-3941.DOI: 10.1002/joc.6435.
[15]Zhu Q T, Zhao W Z, 2018.Correcting climate model simulations in Heihe River using the multivariate bias correction package[J].Environmental and Ecological Statistics, 25(3): 387-403.DOI: 10.1007/s10651-018-0410-x.
[16]程文举, 席海洋, 张经天, 2020.黑河上游径流对极端气候变化的响应研究[J].高原气象, 39(1): 120-129.DOI: 10.7522/j.issn.1000-0534.2020.00029.
[17]程玉菲, 程文举, 胡想全, 等, 2019.疏勒河流域极端水文事件对极端气候的响应[J].高原气象, 38(3): 583-592.DOI: 10.7522/j.issn.1000-0534.2019.00027.
[18]冯晓莉, 申红艳, 李万志, 等, 2020.1961 -2017年青藏高原暖湿季节极端降水时空变化特征[J].高原气象, 39(4): 694-705.DOI: 10.7522/j.issn.1000-0534.2020.00029.
[19]李佳瑞, 牛自耕, 冯岚, 等, 2020.CMIP5模式对长江和黄河流域极端气温指标的模拟与预估[J].地球科学, 45(6): 1887-1904.DOI: 10.13826/j.cnki.cn65-1103/x.2017.05.008.
[20]刘卫林, 熊翰林, 刘丽娜, 等, 2019.基于CMIP5模式和SDSM的赣江流域未来气候变化情景预估[J].水土保持研究, 26(2): 145-152.DOI: 10.13869/j.cnki.rswc.2019.02.021.
[21]李晓菲, 徐长春, 李路, 等, 2019.CMIP5模式对西北干旱区典型流域气温模拟能力评估——以开都-孔雀河为例[J].资源科学, 41(6): 1141-1153.DOI: 10.18402/resci.2019.06.13.
[22]卢珊, 胡泽勇, 王白朋, 等, 2020.近56年中国极端降水事件的时空变化格局[J].高原气象, 39(4): 683-693.DOI: 10.7522/j.issn.1000-0534.2019.00058.
[23]祁晓凡, 李文鹏, 李海涛, 等, 2017.基于CMIP5模式的干旱内陆河流域未来气候变化预估[J].干旱区地理, 40(5): 987-996.DOI: 10.13826/j.cnki.cn65-1103/x.2017.05.008.
[24]孙栋元, 齐广平, 鄢继选, 等, 2020.疏勒河干流降水变化特征[J].干旱区研究, 37(2): 291-303.DOI: 10.13866/j.azr.2020.02.03.
[25]张宏文, 高艳红, 2020.基于动力降尺度方法预估的青藏高原降水变化[J].高原气象, 39(3): 477-485.DOI: 10.7522/j.issn. 1000-0534.2019.00125.
[26]张丽霞, 陈晓龙, 辛晓歌, 2019.CMIP6情景模式比较计划(ScenarioMIP)概况与评述[J].气候变化研究进展, 15(5): 519-525.DOI: 10.12006/j.issn.1673-1719.2019.082.
[27]周天军, 陈梓明, 邹立维, 等, 2020.中国地球气候系统模式的发展及其模拟和预估[J].气象学报, 78(3): 332-350.DOI: 10. 11676/qxxb2020.029.
[28]张蓓, 戴新刚, 杨阳, 2019.21世纪前期中国降水预估及其订正[J].大气科学, 43(6): 1385-1398.DOI: 10.3878/j.issn.1006-9895.1902.18221.
[29]赵娜, 岳天祥, 史文娇, 等, 2017.基于HASM方法对气候模式气温降水的降尺度研究——以黑河流域为例[J].中国沙漠, 37(6): 1227-1236.DOI: 10.7522/j.issn.1000-694X.2016.00074.
[30]王雅琦, 冯娟, 李建平, 等, 2020.西北地区东部夏季降水年际变化特征及其与环流的关系[J].高原气象, 39(2): 290-300.DOI: 10.7522/j.issn.1000-0534.2019.00023.
[31]辛晓歌, 吴统文, 张洁, 等, 2019.BCC模式及其开展的CMIP6试验介绍[J].气候变化研究进展, 15(5): 533-539.DOI: 10. 12006/j.issn.1673-1719.2019.039.
[32]于灏, 周筠珺, 李倩, 等, 2020.基于CMIP5模式对四川盆地湿季降水与极端降水的研究[J].高原气象, 39(1): 68-79.DOI: 10.7522/j.issn.1000-0534.2019.00007.
[33]赵宗慈, 罗勇, 黄建斌, 2018.从检验CMIP5气候模式看CMIP6地球系统模式的发展[J].气候变化研究进展, 14(6): 643-648.DOI: 10.12006/j.issn.1673-1719.2018.036.
文章导航

/