论文

CMIP6模式对黄河上游降水的模拟及预估

  • 赵梦霞 ,
  • 苏布达 ,
  • 姜彤 ,
  • 王安乾 ,
  • 陶辉
展开
  • <sup>1.</sup>中国气象局国家气候中心,北京 100081;<sup>2.</sup>中国科学院新疆生态与地理研究所,荒漠与绿洲生态国家重点实验室,新疆 乌鲁木齐 830011;<sup>3.</sup>南京信息工程大学地理科学学院/灾害风险管理研究院,江苏 南京 210044;<sup>4.</sup>中国科学院大学,北京 100049

收稿日期: 2020-05-11

  网络出版日期: 2021-06-28

基金资助

国家重点研发计划项目(2017YFA0603701);国家自然科学基金项目(41671211)

Simulation and Projection of Precipitation in the Upper Yellow River Basin by CMIP6 Multi-Model Ensemble

  • Mengxia ZHAO ,
  • Buda SU ,
  • Tong JIANG ,
  • Anqian WANG ,
  • Hui TAO
Expand
  • <sup>1.</sup>National Climate Centre,Beijing 100081,China;<sup>2.</sup>State Key Laboratory of Desert and Oasis Ecology,Xinjiang Institute of Ecology and Geography,Chinese Academy of Science,Urumqi 830011,Xinjiang,China;<sup>3.</sup>Institute for Disaster Risk Management (iDRM)/School of Geographical Science,Nanjing University of Information Science & Technology,Nanjing 210044,Jiangsu,China;<sup>4.</sup>University of Chinese Academy of Sciences,Beijing 100049,China

Received date: 2020-05-11

  Online published: 2021-06-28

摘要

基于地面气象站观测资料, 采用偏差订正后的国际耦合模式比较计划第六阶段(CMIP6)中情景齐全的5个气候模式, 评估气候模式对1995 -2014年黄河上游降水的模拟能力, 并预估了7 个SSP-RCP情景下黄河上游2021 -2040年(近期)、 2041 -2060年(中期)、 2081 -2100年(末期)的降水变化趋势。结果表明: (1)多模式集合平均能够较好地模拟黄河上游降水年内分布特征, 并且能够模拟出黄河上游降水南多北少的空间格局, 模式数据与观测值的空间相关系数达0.9以上, CMIP6多模式集合对黄河上游降水时空变化特征具有较强的模拟能力; (2)21世纪黄河上游年降水呈显著增加趋势, 伴有明显的年代际波动。相比基准期(1995 -2014年), SSP1-1.9和SSP1-2.6情景下21世纪黄河上游年降水呈现先增加后减缓的特征, 近期到中期降水增幅加大, 中期到末期降水增幅减缓; SSP2-4.5、 SSP3-7.0和SSP5-8.5下, 年降水增幅从近期到末期持续增加; 而SSP4-3.4与SSP4-6.0下, 21世纪近期降水有所下降, 中期出现拐点, 随后持续增加。空间上, 降水增加幅度较大的区域主要集中在降水较少的黄河沿以上区域和兰州至头道拐之间的区域; (3)21世纪黄河上游各季降水总体表现为波动上升趋势, 增速因情景和季节而异。除SSP4-6.0情景, 总体上表现出高辐射强迫情景降水变化趋势大于低辐射强迫情景; 冬季增幅最大, 夏季增幅最小, 趋势均通过0.1显著性水平; 空间上, 春秋两季降水增幅高值中心在黄河沿以上区域和兰州至头道拐之间区域, 增幅低值中心在黄河沿至兰州之间; 冬季降水增幅高值中心位于兰州至头道拐之间的区域, 降水增幅相对较低的区域在黄河沿至兰州之间的区域; 夏季降水除SSP4-3.4和SSP4-6.0情景在21世纪近期黄河上游大部较基准期有所下降外, 其余情景下增幅高值区在黄河沿以上区域。

本文引用格式

赵梦霞 , 苏布达 , 姜彤 , 王安乾 , 陶辉 . CMIP6模式对黄河上游降水的模拟及预估[J]. 高原气象, 2021 , 40(3) : 547 -558 . DOI: 10.7522/j.issn.1000-0534.2020.00066

Abstract

The ground-based observational dataset is applied to evaluate the performance of 5 GCMs from the Coupled Model Intercomparison Project Phase 6 (CMIP6) in the Upper Yellow River Basin during 1995 -2014.And then, precipitation trends in the near term (2021 -2040), mid-term (2041 -2060), and long term (2081 -2100) under 7 SSP-RCP scenarios are projected, respectively.The results show that: (1) Multi-model ensemble mean can capture the inner-annual distribution of precipitation in the Upper Yellow River Basin, and the characteristic of more precipitation in the South and less precipitation in the north can also be captured.The spatial correlation coefficient between the simulated data and the observed data is above 0.9.That is to say, the spatial-temporal characteristics of precipitation in the Upper Yellow River Basin can be simulated satisfactorily by an ensemble mean of 5 GCMs.(2) In the 21st century, annual precipitation in the Upper Yellow River Basin will demonstrate a significant increase tendency with obvious inter-decadal fluctuations.Relative to the baseline period 1995 -2004, the ascended annual precipitation will be faster in the near-term and then slow down in the 21st century under SSP1-1.9 and SSP1-2.6 scenarios.Annual precipitation will rise continuously from near term to the end of 21st under SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios.Under SSP4-3.4 and SSP4-6.0 scenarios, annual precipitation will decrease slightly in the near term, but a turning point is detected in the mid-term, and precipitation will increase afterward.Spatially, the largest increase will be in the areas where precipitation is relatively small, including the headstream region above Huangheyan station and the region between Lanzhou and Toudaoguai.(3) Seasonal precipitation in the 21st century in the Upper Yellow River Basin will show an overall rising trend with fluctuation, and the growth rate varies with scenarios and seasons.Except for the SSP4-6.0 scenario, precipitation trend under high radiation forcing scenarios will be greater than that of low radiation forcing scenarios.The growth rate is the largest for winter precipitation, while the growth rate is the smallest for summer precipitation, both passing the 0.1 significance level.Spatially, the highest growth of spring and autumn precipitation is projected in the headstream region above Huangheyan station and the region between Lanzhou and Toudaoguai.While the smallest growth of spring and autumn precipitation will be in the region between Huangheyan and Lanzhou.The area with the highest increase of winter precipitation is projected in the region between Lanzhou and Toudaoguai, and the smallest increase in the region between Huangheyan and Lanzhou.Summer precipitation will decrease in most of the Upper Yellow River Basin under SSP4-3.4 and SSP4-6.0 scenarios, but it will increase in most of the Basin with the highest growth in the headstream region above Huangheyan under all other scenarios.

参考文献

[1]Gao C, Su B D, Krysanova V, al et, 2020.A 439-year simulated daily discharge dataset (1861-2299) for the upper Yangtze River, China[J].Earth System Science Data, 12(1): 387-402.
[2]Huang J L, Zhai J Q, Jiang T, al et, 2018.Analysis of future drought characteristics in China using the regional climate model CCLM[J].Climate Dynamics, 50(1/2): 507-525.
[3]Lambert S J, Boer G J, 2001.CMIP1 evaluation and intercomparison of coupled climate models[J].Climate Dynamics, 17(2/3): 83-106.
[4]Moss R H, Edmonds J A, Hibbard K A, al et, 2010.The next generation of cenarios for climate change research and assessment[J].Nature, 463 (7282): 747-756
[5]O’Neill B C, Tebaldi C, Vuuren D P, al et, 2016.The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6[J].Geoscientific Model Development, 9: 3461-3482.
[6]O’Neill B C, Kriegler E, Ebi K L, al et, 2017.The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century[J].Global Environmental Change, 42: 169-180.
[7]Torres R R, Marengo J A, 2014.Climate change hotspots over South America: From CMIP3 to CMIP5 multi-model datasets[J].Theoretical and Applied Climatology, 117(3/4): 579-587.
[8]Van Vuuren D P, Edmonds J, Kainuma M, al et, 2011.The representative concentration pathways: An overview[J].Climatic Change, 109: 5-31.
[9]Wang G Q, Zhang J Y, Jin J L, al et, 2017.Impacts of climate change on water resources in the Yellow River basin and identification of global adaptation strategies[J].Mitigation & Adaptation Strategies for Global Change, 22(1): 67-83.
[10]Zhu Y N, Lin Z H, Wang J H, al et, 2016.Impacts of Climate Changes on Water Resources in Yellow River Basin, China[J].Procedia Engineering, 154: 687-695.
[11]Zhou T J, Zou L W, Chen X L, 2019.Commentary on the Coupled Model Intercomparison Project Phase 6 (CMIP6)[J].Climate Change Research, 15 (5): 445.
[12]鲍振鑫, 张建云, 严小林, 等, 2014.海河流域60年降水量的变化及未来情景分析[J].水利水运工程学报 (5): 8-13.
[13]陈磊, 2017.黄河流域水资源对气候变化的响应研究[D].西安: 西安理工大学.
[14]陈悦, 李文铠, 郭维栋, 2019.青藏高原季风的季节内振荡特征[J].高原气象, 38(6): 1158-1171.DOI: 10.7522/j.issn.1000-0534. 2019.00001.
[15]曹丽格, 方玉, 姜彤, 等, 2012.IPCC 影响评估中的社会经济新情景( SSPs) 进展[J].气候变化研究进展, 8(1): 74-78.
[16]胡婷, 胡永云, 2014.对IPCC第五次评估报告检测归因结论的解读[J].气候变化研究进展, 10(1): 51-55.DOI: 10.3969/j.issn. 1673-1719.2014.01.011.
[17]姜彤, 苏布达, Marco G, 2008.长江流域降水极值的变化趋势[J].水科学进展, 9(5): 650-655.DOI: 10.3321/j.issn: 1001-6791. 2008.05.008.
[18]缪启龙, 张磊, 丁斌, 2007.青藏高原近40年的降水变化及水汽输送分析[J].气象与减灾研究, 30(1): 14-18.DOI: 10.3969/j.issn.1007-9033.2007.01.003.
[19]吕文涓, 2020.甘肃省委党校(甘肃行政学院)中共党史教研部.推进黄河流域生态保护和高质量发展[N].甘肃日报, 2020-03-17(9).
[20]康丽莉, Leung L R, 柳春, 等, 2015.黄河流域未来气候-水文变化的模拟研究[J].气象学报, 73(2): 382-393.
[21]刘勤, 严昌荣, 何文清, 2016.黄河流域干旱时空变化特征及其气候要素敏感性分析[J].中国农业气象, 37(6): 623-632.DOI: 10.3969/j.issn.1000-6362.2016.06.002.
[22]刘晓冉, 胡祖恒, 李永华, 等, 2020.重庆地区冬季冷暖变化及其异常成因分析[J].干旱气象, 38(3): 404-410.
[23]蓝柳茹, 李栋梁, 2016.西伯利亚高压的年际和年代际异常特征及其对中国冬季气温的影响[J].高原气象, 35 (3): 662-634.DOI: 10.7522/j.issn.1000-0534.2016.00022.
[24]李二辉, 穆兴民, 赵广举, 2014.1919-2010年黄河上中游区径流量变化分析[J].水科学进展, 25(2): 155-163.
[25]李生辰, 李栋梁, 赵平, 等, 2009.青藏高原“三江源地区”雨季水汽输送特征[J].气象学报, 67(4): 591-598.DOI: 10.11676/qxxb2009.059.
[26]马柱国, 符淙斌, 周天军, 等, 2020.黄河流域气候与水文变化的现状及思考[J].中国科学院院刊, 35(1): 52-60.
[27]马佳宁, 高艳红, 2019.近50 年黄河上游流域年均降水与极端降水变化分析[J].高原气象, 38(1): 124-135.DOI: 10.7522/j.issn.1000-0534.2018.00126.
[28]强安丰, 魏加华, 解宏伟, 2018.青海三江源地区气温与降水变化趋势分析[J].水电能源科学, 36(2): 10-14.
[29]苏布达, 姜彤, 任国玉, 等, 2006.长江流域1960—2004 年极端强降水时空变化趋势[J].气候变化研究进展, 2(1): 9-14.
[30]沈永平, 王国亚, 2013.IPCC第一工作组第五次评估报告对全球气候变化认知的最新科学要点[J].冰川冻土, 2013(5): 10-18.
[31]陶辉, 黄金龙, 翟建青, 等, 2013.长江流域气候变化高分辨率模拟与RCP4.5情景下的预估[J].气候变化研究进展, 9 (4): 246-251.
[32]魏洁, 畅建霞, 陈磊, 2016.基于VIC模型的黄河上游未来径流变化分析[J].水力发电学报, 35(5): 65-74.DOI: 10.11660/slfdxb.20160508.
[33]吴佳, 高学杰, 韩振宇, 等, 2017.基于有效温度指数的云南舒适度变化分析[J].地球科学进展, 32(2): 174-186.
[34]王国庆, 乔翠平, 刘铭璐, 等, 2020.气候变化下黄河流域未来水资源趋势分析[J].水利水运工程学报(2): 1-8.
[35]翁宇威, 蔡闻佳, 王灿, 2020.共享社会经济路径(SSPs)的应用与展望[J].气候变化研究进展, 16 (2): 215-222.
[36]王玉琦, 鲍艳, 南素兰, 2019.青藏高原未来气候变化的热动力成因分析[J].高原气象, 38(1): 29-41.DOI: 10.7522/j.issn. 1000-0534.2018.00066.
[37]王雅琦, 冯娟, 李建平, 等, 2020.西北地区东部夏季降水年际变化特征及其与环流的关系[J].高原气象, 39(2): 290-300.DOI: 10.7522/j.issn.1000-0534.2019.00023.
[38]王林, 冯娟, 2011.我国冬季降水年际变化的主模态分析[J].大气科学, 35(6): 1 105-1116.
[39]许建伟, 高艳红, 彭保发,等, 2020.1979-2016年青藏高原降水的变化特征及成因分析[J].高原气象, 39(2): 234-244.DOI: 10.7522/j.issn.1000-0534.2019.00029.
[40]许晨海, 姚展予, 陈进强, 2004.黄河上游降水的时空变化及其环流特征[J].气象, 30(11): 51-54.
[41]郑子彦, 吕美霞, 马柱国, 2020.黄河源区气候水文和植被覆盖变化及面临问题的对策建议[J].中国科学院院刊, 35(1): 61-72.
[42]钟军, 苏布达, 翟建青, 等, 2013.中国日降水的分布特征和未来变化[J].气候变化研究进展, 9(2): 89-95.
[43]张学珍, 李侠祥, 徐新创, 等, 2017.基于模式优选的21世纪中国气候变化情景集合预估[J].地理学报, 72(9): 1555-1568.
[44]张丽霞, 陈晓龙, 辛晓歌, 2019.CMIP6情景模式比较计划(ScenarioMIP)概况与评述[J].气候变化研究进展, 15(5): 519-525.
[45]张杰, 曹丽格, 李修仓, 等, 2013.IPCC AR5 中社会经济新情景( SSPs) 研究的最新进展[J].气候变化研究进展, 9(3): 225-228.
[46]张红武, 方红卫, 钟德钰, 等, 2020.宁蒙黄河治理对策[J].水利水电技术, 51(2): 1-25.
[47]周天军, 吴波, 郭准, 等, 2018.东亚夏季风变化机理的模拟和未来变化的预估: 成绩和问题、 机遇和挑战[J].大气科学, 42 (4): 902-934.
文章导航

/