利用区域高分辨率数值模式WRF对2015年4月28日冷涡背景下发生在苏皖地区的冰雹过程进行模拟, 并结合地面加密自动站、 多普勒天气雷达等观测资料讨论了此次过程中对流系统结构演变特征及影响其组织发展的可能机制。结果表明: 导致冰雹的对流系统在发展、 传播及组织过程中与中尺度重力波相联系, 重力波源于地面中尺度低压附近的初始对流的强烈发展, 在条件性不稳定和较强的垂直风切变环境中传播, 激发并组织形成一列波状结构的对流风暴, 这列风暴动力结构高度组织化, 上升-下沉气流相间排列, 每个风暴内伴有强盛的上升气流, 位于风暴后侧的下沉气流至地面后在风暴低层前后两侧各形成一支次级环流, 将这列风暴单体有序地组织成波状对流带, 对流风暴与重力波通过wave-CISK机制相互促进与发展, 导致苏皖北部出现冰雹带。随着大气层结不稳定进一步发展, 重力波的传播环境不再适宜, 对流风暴列发展不平衡, 波列前端的风暴单体加强, 后部的风暴减弱, 波列状结构特征逐渐改变。
The high resolution numerical model WRF is used to simulate the hail weather occurring over Jiangsu and Anhui provinces on 28 April 2015 under the background of cold vortex.Combined with simulation data and observation data such as surface dense automatic station and Doppler weather radar, the evolution characteristics of the convective system structure and the possible mechanism affecting its organization and development are studied.The results show that the development, propagating and organization of the convective system causing hails is associated with the mesoscale gravity wave, which is triggered during the development of initial convection near the mesoscale low pressure.Then gravity waves motivate and organize a row of wavelike convective stormss during propagating in the conditional instability and strong vertical wind shear environment.The dynamic structure of the convective storms train is highly organized with updraft and downdraft flows arranged alternately.Each storm is accompanied by strong updraft, and the downdraft behind the storm reaches the ground and form a secondary circulation on both sides of the front and back of the low level of the storm, then the belt of wavelike convective storms are well-organized.Convective storms and gravity wave promote and develop mutually by means of wave-CISK mechanism, thus lead to the sequence of hail occurring in the north of Jiangsu and Anhui provinces.With the further development of stratification instability, the propagation environment of gravity wave is no longer suitable, and the development of convective storm train is unbalanced.The storm cell at the front of the wave train is strengthened, while the storm at the back is weakened, and the wavelike structure is gradually changed.
[1]Adlerman E J, Droegemeier K K, 2005.The dependence of numerically simulated cyclic mesocyclogenesis upon environmental vertical Wind Shear[J].Monthly Weather Review, 133(12): 3595-3623.
[2]Fovell R G, Ogura Y, 1989.Effect of vertical wind shear on numerically simulated multicell storm structure [J].Journal of the Atmospheric Sciences, 46 (20): 3144- 3176.
[3]Koch S E, Golus R E, Dorian P B, 1988.A mesoscale gravity wave event observed during CCOPE.PartⅡ: Interactions between mesoscale convective systems and the antecedent waves[J].Monthly Weather Review, 116(12): 2545- 2569.
[4]LeMone M A, Zipser E J, Trier S B, 1998.The role of environmental shear and thermodynamic conditions in determining the structure and evolution of mesoscale convective systems during TOGA COARE[J].Journal of the Atmospheric Sciences, 55(23): 3493 -3518.
[5]Liu C, Moncrieff M W, 2004.Effects of convectively generated gravity waves and rotation on the organization of convection[J].Journal of the Atmospheric Sciences, 61(17): 2218-2227.
[6]Moore G W K, 1985.The Organization of convection in narrow cold-frontal rainbands[J].Journal of the Atmospheric Sciences, 42(17): 1777-1791.
[7]Rauber R M, Yang M, Rarmamurthy M K, al et, 2001.Origin, evolution, and finescale structure of the St.Valentine's Day mesoscale gravity wave observed during STORM-FEST.Part I: Origin and evolution[ J].Monthly Weather Review, 129(2): 198-217.
[8]Raymond D J, 1976.Wave CISK and convective mesosystems [J].Journal of the Atmospheric Sciences, 33(16): 2392-2398.
[9]Robe F R, Emanuel K A, 2001.The effect of vertical wind shear on radiative-convective equilibrium states [J].Journal of the Atmospheric Sciences, 58 (11): 1427-1445.
[10]Weisman M L, Rotunno R, 2004.“A theory for strong long-lived squall lines” revisited [J].Journal of the Atmospheric Sciences, 61 (4): 361-382.
[11]巢纪平, 1980.非均匀层结大气中的重力惯性波及其在暴雨预报中的初步应用[J].大气科学, 4 (3): 35-40.
[12]陈秋萍, 陈齐川, 冯晋勤, 等, 2015.”2012.4.11”两个强降雹超级单体特征分析[J].气象, 41(1): 25-33.
[13]刁秀广, 杨传凤, 李静, 等, 2011.济南地区超级单体强度和流场结构分析[J].高原气象, 30(2): 489-497.
[14]陆汉城, 杨国祥, 2000.中尺度天气原理和预报[M].北京: 气象出版社, 213-218.
[15]冯晋勤, 俞小鼎, 傅伟辉, 等, 2012.2010年福建一次早春强降雹超级单体风暴对比分析[J].高原气象, 31(1): 239-250.
[16]胡伯威, 2005.梅雨锋上MCS的发展、 传播以及与低层“湿度锋”相关联的CISK惯性重力波[J].大气科学, 29(6): 845-853.
[17]李麦村, 1978.重力波对特大暴雨的触发作用[J].大气科学, 2(3): 201-209.
[18]寿绍文, 励申申, 寿亦萱, 等, 2009.中尺度大气动力学[M].北京: 高等教育出版社, 73-86.
[19]孙继松, 王华, 2009.重力波对一次雹暴过程演变的影响[J].高原气象, 28(1): 165-172.
[20]孙继松, 何娜, 郭锐, 等, 2013.多单体雷暴的形变与列车效应传播机制[J].大气科学, 37(1): 137-148.
[21]吴海英, 陈海山, 刘梅, 等, 2017.长生命史超级单体结构特征与形成维持机制[J].气象, 43(2): 141-150.
[22]许小峰, 孙照渤, 2003.非地转平衡流激发的重力惯性波对梅雨锋暴雨影响的动力学研究[J].气象学报, 61(6): 655-660.
[23]徐燚, 闫敬华, 王谦谦, 等, 2013.华南暖区暴雨的一种低层重力波触发机制[J].高原气象, 32(4): 1050-1061.DOI: 10.7522/j.issn.1000-0534.2012.00100.
[24]易军, 寿绍文, 高守亭, 等, 2009.一次梅雨锋暴雨过程的中尺度特征分析[J].气象科学, 29(6): 761-767.
[25]俞小鼎, 周小刚, 王秀明, 2012.雷暴与强对流临近天气预报技术进展[J].气象学报, 70(3): 311-337.
[26]张桂莲, 常欣, 黄晓璐, 等, 2018.东北冷涡背景下超级单体风暴环境条件与雷达回波特征[J].高原气象, 37(5): 1364-1374.DOI: 10.7522/j.issn.1000-0534.2018.00068.
[27]张玉洁, 苑文华, 张武, 2019.两次长寿命孤立超级单体风暴结构差异性分析[J].高原气象, 38(5): 1058-1068.DOI: 10. 7522/j.issn.1000-0534.2019.00055.
[28]朱平, 俞小鼎, 2019.青藏高原东北部一次罕见强对流天气的中小尺度系统特征分析[J].高原气象, 38(1): 1-13.DOI: 10. 7522/j.issn.1000-0534.2018.00070.