近年来, 中国冬季极端低温事件逐渐增多, 其天气表征和成因存在很大差异。本文将极端低温事件分成大范围持续性低温事件(EPECE)和普通寒潮事件(CWE)两类, 对其特征和大气环流成因进行了分析。结果表明: CWE平均维持3~5天, 过程期间降温迅速并很快升温、 降水出现在过程前期; 而EPECE平均维持超过15天, 降温幅度更大、 降温范围更广、 降水主要在过程后期。进一步分析环流成因发现, 在EPECE中, 事件开始前11(-11)天时对流层波动出现异常信号并上传, 平流层极涡中心偏东, -9天时出现异常向东扩展的反气旋式Rossby波破碎(AWB)又将能量下传至对流层, 阻塞高压异常向东扩展至90°E, 阻塞强度最大超过24, 阻塞频率最大超出气候态50%, 西伯利亚高压的强度增强到1053 hPa。上述异常维持至过程发生后7(+7)天, 从而使得冷空气爆发时降温剧烈、 持续时间长。而CWE中前兆信号出现相对较晚, -3天时平流层极涡中心位于极点附近, 伴随第0天出现AWB, 乌拉尔山地区阻高异常局限在60°E附近, 阻塞强度最大超过20, 阻塞频率最大超出气候态45%, 西伯利亚高压强度达到1050 hPa。+3天后, 各环流系统的异常几乎消失, 因而降温虽然剧烈但维持时间较短。
There has been an increase of extreme cold events in China for the past few years, with distinctly different characteristics and causes of formation.The extreme cold events are classified into two types, i.e.the extensive and persistent extreme cold events (EPECE) and the cold wave events (CWE).The results show that the average duration of CWE is 3~5 days.During the process, while the temperature drops rapidly, it also rises quickly.The precipitation occurs in the early stage of the process.In contrast, EPECE lasts for more than 15 days on average, with a more drastical temperature drop and a wider temperature reduction range.The precipitation mainly occurs in the later stages of the process.With further analysis of the cause of atmospheric circulation, the anomalies of tropospheric system appear at 11days prior to (-11) the event, indicating wave anomalies are transmited to the stratosphere in the EPECE.It makes the center of stratospheric polar vortex to be further east.The energy is transmitted down to the troposphere with the anticyclonic Rossby wave breaking(AWB) which extends eastward at -9 days.The blocking high abnormally extends eastward to 90°E.The maximum blocking intensity exceeds 24, and the maximum blocking frequency exceeds 50% of the climatology.The intensity of Siberian high pressure increases to 1053 hPa.The above abnormalities maintain until 7 (+7) days after the occurrence of the event.As a result, when the cold air breaks out, the temperature is drastically reduced with a longer duration.By comparison, there are no such premature precursor signals in CWE.Accompanied by AWB at day 0, the center of the stratospheric polar vortex is near the pole at -3 days.The maximum blocking intensity exceeds 20, and the maximum blocking frequency exceeds 45% of the climatology.But the blocking limited to 60°E around Ural Mountain area.The maximum intensity of the Siberian high reaches 1050 hPa.+3 days later, the anomalies of the circulation systems almost disappeared.Therefore, in the CWE, the temperature drop is also intense, but the duration is shorter compared with that in the EPECE.
[1]Alexander L V, Zhang X, Peterson T C, al et, 2006.Global observed changes in daily climate extremes of temperature and precipitation[J].Journal of Geophysical Research: Atmospheres, 111(D5): D05109.DOI: 10.1029/2005JD006290.
[2]Cheung H N, Zhou W, 2014.Implications of Ural blocking for East Asian winter climate in CMIP5 GCMs.Part I: Biases in the historical scenario[J].Journal of Climate, 28(6): 2203-2216.DOI: 10.1175/JCLI-D-14-00308.1.
[3]Cohen J, Screen J, Furtado J, al et, 2014.Recent Arctic amplification and extreme mid-latitude weather[J].Nature Geoscience, 7(9): 627-637.DOI: 10.1038/ngeo2234.
[4]Davini P, Cagnazzo C, Gualdi S, al et, 2012.Bidimensional diagnostics, variability, and trends of northern hemisphere blocking[J].Journal of Climate, 25(19): 6496-6509.DOI: 10.1175/JCLI-D-12-00032.1.
[5]Ding Y H, Krishnamurti T N, 1987.Heat budget of the Siberian high and the winter monsoon[J].Monthly Weather Review, 115(10): 2428-2449.DOI: 10.1175/1520-0493(1987)115<2428: hbotsh>2.0.co; 2.
[6]IPCC, 2013: Climate change 2013: The physical science basis[C].
[7]Stocker T F, Qin D, Plattner G K, al et, eds.Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge: Cambridge University Press.
[8]Kharin V V, Zwiers F W, Zhang X B, al et, 2007.Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations[J].Journal of Climate, 20(8): 1419-1444.DOI: 10.1175/JCLI4066.1.
[9]Klein F, Goosse H, Mairesse A, al et, 2013.Model-data comparison and data assimilation of mid-Holocene Arctic sea-ice concentration[J].Climate of the Past Discussions, 9(6): 6515-6549.DOI: 10.5194/cpd-9-6515-2013.
[10]Kolstad E W, Breiteig T, Scaife A A, 2010.The association between stratospheric weak polar vortex events and cold air outbreaks in the Northern Hemisphere[J].Quarterly Journal of the Royal Meteorological Society, 136(649): 886-893.DOI: 10.1002/qj.620.
[11]Li Y, Zhang J Y, Lu Y, al et, 2019.Characteristics of transient eddy fluxes during blocking highs associated with two cold events in China [J].Atmosphere, 10(5): 235.DOI: 10.3390/atmos10050235.
[12]Miller G H, Brigham-Grette J, Alley R B, al et, 2010.Temperature and precipitation history of the Arctic[J].Quaternary Science Reviews, 29(15): 1679-1715.DOI: 10.1016/j.quascirev.2010.03.001.
[13]Nash E R, Newman P A, Rosenfield J E, al et, 1996.An objective determination of the polar vortex using Ertel's potential vorticity[J].Journal of Geophysical Research Atmospheres, 101(D5): 9471-9478.DOI: 10.1029/96JD00066.
[14]Peng J B, Bueh C, 2011.The definition and classification of extensive and persistent extreme cold events in China[J].Atmospheric and Oceanic Science Letters, 4(5): 281-286.DOI: 10.1080/16742834. 2011.11446943.
[15]Teubler F, Riemer M, 2016.Dynamics of Rossby wave packets in a quantitative potential vorticity-potential temperature framework[J].Journal of the Atmospheric Sciences, 73(3): 1063-1081.DOI: 10.1175/JAS-D-15-0162.1.
[16]Tibaldi S, Molteni F, 1990.On the operational predictability of blocking[J].Tellus, 42(3): 343 - 365.DOI: 10.1034/j.1600-0870. 1990.t01-2-00003.x.
[17]Wiedenmann J M, Lupo A R, Mokhov I I, al et, 2002.The climatology of blocking anticyclones for the northern and southern hemispheres: Block intensity as a diagnostic[J].Journal of Climate, 15(15): 3459-3473.DOI: 10.1175/1520-0442(2002)0152.0.CO; 2.
[18]Wu J, Gao X J, 2013.A gridded daily observation dataset over China region and comparison with the other datasets [J].Chinese Journal of Geophysics Chinese Edition, 56(4): 1102-1111.DOI: 10.6038/cjg20130406.
[19]Zhang J K, Tian W S, Chipperfield M P, al et, 2016.Persistent shift of the Arctic polar vortex towards the Eurasian continent in recent decades[J].Nature Climate Change, 6 (12): 1094-1099.DOI: 10.1038/nclimate3136.
[20]龚道溢, 朱锦红, 王绍武, 2002.西伯利亚高压对亚洲大陆的气候影响分析[J].高原气象, 21 (1): 8-21.
[21]龚志强, 王晓娟, 任福民, 等, 2013.亚欧中纬度关键区正位势高度距平场配置与中国冬季区域性极端低温事件的联系[J].大气科学, 37(6): 1274-1286.
[22]康彩燕, 胡钰玲, 王式功, 等, 2017.极涡对北半球冬季气温的影响[J].兰州大学学报(自然科学版), 53(2): 227-234.DOI: 10. 13885/j.issn.0455-2059.2017.02.012.
[23]李峰, 矫梅燕, 丁一汇, 等, 2006.北极区近30年环流的变化及对中国强冷事件的影响[J].高原气象, 25(2): 209-219.
[24]李维京, 李怡, 陈丽娟, 等, 2013.我国冬季气温与影响因子关系的年代际变化[J].应用气象学报, 24(4): 385-396.DOI: 10. 11898/1001-7313.20130401.
[25]李艳, 王式功, 金荣花, 等, 2012.我国南方低温雨雪冰冻灾害期间阻塞高压异常特征分析[J].高原气象, 31(1): 94-101.
[26]李艳, 张金玉, 王嘉禾, 等, 2018.典型极端低温事件中高空急流和阻塞高压的特征及其协同作用[J].兰州大学学报(自然科学版), 54(5): 670-679+690.
[27]刘彤, 闫天池, 2011.我国的主要气象灾害及其经济损失[J].自然灾害学报, 20(2): 90-95.DOI: 10.13577/j.jnd.2011.0214.
[28]卢珊, 胡泽勇, 王百朋, 等, 2020.近56年中国极端降水事件的时空变化格局[J].高原气象, 39(4): 683-693.DOI: 10.7522/j.issn.1000-0534.2019.00058.
[29]罗霄, 2016.东亚冬季风变率与高空急流的联系及冬季风季节预报[D].南京: 南京大学.
[30]马鹤翟, 2018.太阳活动对欧亚冬季大气环流和极端气温的影响[D].南京: 南京信息工程大学.
[31]麻巨慧, 王盘兴, 李丽平, 等, 2009.“0801南方雪灾”与同期蒙古高压中期活动的关系[J].大气科学学报, 32(5): 652-660.DOI: 10.13878/j.cnki.dqkxxb.2009.05.004.
[32]彭京备, 孙淑清, 2017.我国南方持续性低温与东亚冬季风“北弱南强”模态的关系[J].大气科学, 41(4): 691-701.DOI: 10. 3878/j.issn.1006-9895.1612.16145.
[33]钱维宏, 张玮玮, 2007.我国近46年来的寒潮时空变化与冬季增暖[J].大气科学, 31(6), 1266-1278.
[34]所玲玲, 黄嘉佑, 谭本馗, 2008.北极涛动对我国冬季同期极端气温的影响研究[J].热带气象学报, 24(2): 163-168.DOI: 10. 3969/j.issn.1004-4965.2008.02.008.
[35]陶诗言, 1959.十年来我国对东亚寒潮的研究[J].气象学报, 30(3): 226-230.DOI: 10.11676/qxxb1959.031.
[36]陶诗言, 卫捷, 2008.2008年1月我国南方严重冰雪灾害过程分析[J].气候与环境研究, 13(4): 337-350.DOI: 10.3878/j.issn. 1006-9585.2008.04.01.
[37]王晓娟, 龚志强, 任福民, 等, 2012.1960—2009年中国冬季区域性极端低温事件的时空特征[J].气候变化研究进展, 8(1): 8-15.DOI: 10.3969/j.issn.1673-1719.2012.01.002.
[38]汪子琪, 张文君, 耿新, 2017.两类ENSO对中国北方冬季平均气温和极端低温的不同影响[J].气象学报, 75(4): 564-580.DOI: 10.11676/qxxb2017.038.
[39]韦道明, 李崇银, 2009.东亚冬季风的区域差异和突变特征[J].高原气象, 28(5): 1149-1157.
[40]武炳义, 王佳, 2004.冬季北极涛动和北极海冰变化对东亚气候变化的影响[J].极地研究, 19 (2): 297-318.
[41]武炳义, 2018.北极海冰融化影响东亚冬季天气和气候的研究进展以及学术争论焦点问题[J].大气科学, 42(4): 786-805.
[42]谢星旸, 游庆龙, 王雨枭, 2018.1961~2014年中国冬季极端低温变化特征分析[J].气候与环境研究, 23(4): 429-441.
[43]杨冬东, 张录军, 周舒, 等, 2020.北半球冬季极端低温事件变化及其与秋季海冰的联系[J].高原气象, 39(1): 102-109.DOI: 10.7522/j.issn.1000-0534.2019.00020.
[44]易明建, 陈月娟, 周任君, 等, 2009.2008年中国南方雪灾与平流层极涡异常的等熵位涡分析[J].高原气象, 28(4): 880-888.
[45]易明建, 陈月娟, 周任君, 等, 2013.亚洲东部冬季地面温度变化与平流层弱极涡的关系[J].大气科学, 37(3): 668-678.DOI: 10.3878/j.issn.1006-9895.2012.12032.
[46]朱红霞, 陈文, 冯涛, 等, 2019.冬季西伯利亚高压的主要年际变化模态及其对东亚气温的影响[J].高原气象, 38(4): 685-692.DOI: 10.7522/j.issn.1000-0534.2018.00116.