陆面模式可以模拟获得高时空分辨率连续的多层土壤湿度, 但其精度受到地表参数的影响, 土壤质地就是其中之一, 本文利用CLDAS-V2.0(中国气象局陆面数据同化系统)驱动Noah-MP模式, 开展了其对土壤湿度模拟的影响研究。结果表明, 利用中国第二次土壤调查数据制作的中国区土壤质地数据(SNSS)与模式自带土壤质地数据(FAO)模拟的2014年中国区域土壤湿度日均值存在显著差异, 0~10 cm深度23.2%的区域差异性大于10%, 74.9%的区域差异性大于1%; 10~40 cm深度20.8%的区域差异性大于10%, 69.8%的区域差异性大于1%。从时间序列来看, 两组实验模拟结果均能基本反映土壤湿度随时间变化的规律, SNSS在0~10 cm处模拟结果表现更好, 但在10~40 cm处出现低估现象。从空间分布分析, 使用SNSS土壤质地类型之后, CLDAS/Noah-MP土壤湿度模拟结果与观测值的偏差为负值的区域较多, 尤其是10~40 cm深度, 大多数区域模拟值均存在低估; 与FAO模拟结果比较, SNSS在东南和西南地区0~10 cm和10~40 cm深度的模拟效果有所改进; 东北地区0~10 cm深度SNSS的模拟效果好于FAO, 但10~40 cm深度的模拟精度两者相差较小。
Soil moisture is a key physical quantity in the land-atmosphere interaction, and also an important parameter in the research of land surface model simulation.However, it is very difficult to obtain the spatiotemporal continuous data in high resolution.Land surface models (LSMs) can simulate the multilayer soil moisture with high spatial and temporal resolution, the community Noah land surface model with multiparameterization options (Noah-MP) has been proved to be a good model for simulating soil moisture in China, but the accuracy needs to be further improved.Soil texture data is an important input data of Noah-MP, and its quality affects the accuracy and reliability of simulation results, it is of great significance to study the effect of soil texture on Noah-MP on simulating soil moisture.Here, we used two different soil texture data to study the effect of soil texture on simulation of Noah-MP LSM driven by CLDAS-V2.0.The results showed that there was a significant difference between the simulated daily mean of soil moisture by the soil texture data from the Second Soil survey of China (SNSS) and the mode inherent soil texture data (FAO) in 2014.The difference of the 0~10 cm depth simulation was greater than 10% in 23.2% areas and 1% in 74.9% areas.For 10~40 cm depth, they were 20.8% and 69.8% respectively.From the analysis of time series, the simulation results of the two group tests of SNSS and FAO can basically reflect the law of soil moisture changing with time.According to the daily results of correlation coefficient, bias and RMSE analysis between simulation and observation, the simulation results of SNSS at 0~10 cm depth were better than those of FAO in almost every day, but in 10~40 cm depth, the simulation results simulated by SNSS are obviously underestimated than the observations.From the analysis of spatial distribution, the soil moisture simulation results of CLDAS/Noah-MP showed that there were many areas with negative deviation from the observed values, especially the depth of 10~40cm, and most of the simulated values were underestimated.Compared with FAO, simulation results simulated by SNSS in the southeast and southwest region at 0~10 cm depth and 10~40 cm depth were improved.The simulation simulated by SNSS at 0~10 cm depth was better than that by FAO in northeast China, but there was little difference between them at 10~40 cm depth.This study provides a scientific basis for the study and application of soil parameter data in CLDAS/Noah-MP.
[1]Chahine M T, 1992.The hydrological cycle and its influence on climate[J].Nature, 359(6394): 373-380.DOI: 10.1038/359373a0.
[2]Dong J N, Ochsner T E, 2018.Soil texture often exerts a stronger influence than precipitation on mesoscale soil moisture patterns[J].Water Resources Research, 54: 2199-2211.DOI: 10.1002/2017wr021692.
[3]Laio F, D'Odorico P, Ridolfi L, 2006.An analytical model to relate the vertical root distribution to climate and soil properties[J].Geophysical Research Letters, 33(18).DOI: 10.1029/2006GL027331.
[4]Gao Y H, Li K, Chen F, al et, 2015.Assessing and improving Noah-MP land model simulations for the central Tibetan Plateau[J].Journal of Geophysical Research: Atmospheres, 120: 9258-9278.DOI: 10.1002/2015JD023404.
[5]Li M X, Ma Z G, 2010.Comparisons of simulation of soil moisture variations in the Yellow River basin driven by various atmospheric forcing data sets[J].Advances in Atmospheric Sciences, 27(6): 1289-1302.DOI: 10.1007/s00376-010-9155-7.
[6]Niu G Y, Yang Z L, Dickinson R E, al et, 2011.The community Noah land surface model with multiparameterization options (Noah-MP): 1.Model description and evaluation with local-scale measurements[J].Journal of Geophysical Research Atmospheres, 116(12): D12109.DOI: 10.1029/2010JD015139.
[7]Qin Y H, Wu T H, Wu X D, al et, 2017.Assessment of reanalysis soil moisture products in the permafrost regions of the central of the Qinghai-Tibet Plateau[J].Hydrological Processes, 31(26): 4647-4659.DOI: 10.1002/hyp.11383.
[8]Shangguan W, Dai Y, Liu B, al et, 2012.A soil particle-size distribution dataset for regional land and climate modelling in China[J].Geoderma, 171/172: 85-91.DOI: 10.1016/ j.geoderma.2011. 01.013.
[9]Shao Y P, 2001.A model for mineral dust emission[J].Journal of Geophysical Research, 106(D17): 20239.DOI: 10.1029/2001jd900171.
[10]Yang F, Lu H, Yang K, al et, 2017.Evaluation and comparison among multiple forcing data sets for precipitation and shortwave radiation over Mainland China[J].Hydrology & Earth System Sciences, European Geosciences Union, 22(10): 5463-5484.DOI: 10.5194/hess-22-5463-2018.
[11]陈萍萍, 沈润平, 师春香, 等, 2018.基于HRCLDAS/CLM陆面数据同化系统的青藏高原地区土壤湿度模拟研究[J].气候与环境研究, 23(4): 442-452.DOI: 10.3878/j.issn.1006-9585. 2018.17139.
[12]龚伟伟, 师春香, 张涛, 等, 2015.中国区域多种数值模式资料的地面气象要素评估[J].气候与环境研究, 20(3): 53-62.DOI: 10.3878/j.issn.1006-9585.2014.13153.
[13]韩帅, 2015.基于CLDAS驱动数据的CLM3.5和SSIB2陆面模式模拟评估及干旱监测应用[D].南京: 南京信息工程大学.
[14]韩帅, 师春香, 姜立鹏, 等, 2017.CLDAS土壤湿度模拟结果及评估[J].应用气象学报, 28(3): 369-378.DOI: 10.11898/1001-7313.20170310.
[15]何媛, 文军, 黄彦彬, 等, 2017.黄河源区土壤湿度时空分布的模拟研究[J].高原气象, 36(1): 129-137.DOI: 10.7522/j.issn. 1000-0534.2015.00117.
[16]黄昌勇, 徐建明, 2010.土壤学[M].北京: 中国农业出版社, 116-117.
[17]赖欣, 文军, 岑思弦, 等, 2014.CLM4.0模式对中国区域土壤湿度的数值模拟及评估研究[J].大气科学, 38(3): 499-512.DOI: 10.3878/j.issn.1006-9895.1401.13194.
[18]梁晓, 戴永久, 2008.通用陆面模式对土壤质地和亮度的敏感性分析[J].气候与环境研究, 13(5): 585-597.DOI: 10.3878/j.issn.1006-9585.2008.05.01.
[19]林朝晖, 刘辉志, 谢正辉, 等, 2008.陆面水文过程研究进展[J].大气科学, 32(4): 935-949.DOI: 10.3724/SP.J.1148.2008.00288.
[20]刘川, 余晔, 解晋, 等, 2015.多套土壤温湿度资料在青藏高原的适用性[J].高原气象, 34(3): 653-665.DOI: 10.7522/j.issn. 1000-0534.2015.00034.
[21]刘火霖, 胡泽勇, 韩赓, 等, 2020.基于Noah-MP模式的影响青藏高原冻融过程参数化方案评估[J].高原气象, 39(1): 1-14.DOI: 10.7522/j.issn.1000-0534.2019.00009.
[22]马晓赟, 王彪, 2017.配对样本T检验在赤足迹与穿鞋足迹同一认定中的应用性研究[J].河南司法警官职业学院学报, 15(3): 102-108.DOI: 10.3969/j.issn.1672-2663.2017.03.020.
[23]沈润平, 郭倩, 陈萍萍, 等, 2019.高分辨率大气强迫和植被功能型数据对青藏高原土壤温度模拟影响[J].高原气象, 38(6): 1129-1139.DOI: 10.7522/J.ISSN.1000-0534.2018.00159.
[24]师春香, 姜立鹏, 朱智, 等, 2018.基于CLDAS2.0驱动数据的中国区域土壤湿度模拟与评估[J].江苏农业科学, 46(4): 231-236.DOI: 10.15889/j.issn.1002-1302.2018.04.059.
[25]苏有琦, 张宇, 宋敏红, 等, 2020.基于实测土壤属性CLM4.5对青藏高原高寒草甸模拟性能的评估[J/OL].高原气象, 39(6): 1-14.DOI: 10.7522/j.issn.1000-0534.2019.00136.[2020-07-10]..
[26]王绍武, 2018.大气强迫数据和土壤质地对陆面模式土壤湿度模拟的影响研究[D].南京: 南京信息工程大学.
[27]吴龙刚, 王爱慧, 盛炎平, 2014.土壤质地对中国区域陆面过程模拟的影响[J].气候与环境研究, 19(5): 559-571.DOI: 10. 3878/j.issn.1006-9585.2013.13055.
[28]熊建胜, 张宇, 王少影, 等, 2014.CLM4.0土壤水分传输方案改进在青藏高原陆面过程模拟中的效应[J].高原气象, 33(2): 323-336.DOI: 10.7522/j.issn.1000-0534.2014.00012.
[29]朱晨, 师春香, 席琳, 等, 2013.中国区域不同深度土壤湿度模拟和评估[J].气象科技, 41(3): 529-536.
[30]朱智, 2016.中国区域高时空分辨率驱动数据的建立及其在Noah-MP陆面模式中的应用[D].南京: 南京信息工程大学.
[31]朱智, 师春香, 张涛, 等, 2018.四套再分析土壤湿度资料在中国区域的适用性分析[J].高原气象, 37(1): 240-252.DOI: 10. 7522/j.issn.1000-0534.2017.00033.