利用LI-6400XT便携式光合作用测定系统和Model 1505植物压力室对河西走廊中部荒漠-绿洲过渡带3种优势种C4植物梭梭(Haloxylon ammodendron)、 沙拐枣(Calligonum mongolicum)和C3植物泡泡刺(Nitraria sphaerocarpa)的水分交换过程和叶片水势(Ψ)变化进行了观测试验, 对比了荒漠植物生长季降水前后水分传输因子的变化; 模拟了气孔导度对主要环境因子和叶片水势的响应; 从饱和水汽压差(VPD)对气孔导度的制约作用研究了荒漠植物蒸腾的调控机制。结果表明: 影响3种灌木气孔导度的主要因子依次为VPD、 气温(T)和Ψ, 气孔导度随着VPD和T的升高而降低, 随着Ψ的降低逐渐减小; 不同荒漠植物气孔导度对环境因子和叶片水势的综合响应模拟研究表明, 模型能够很好地模拟气孔导度日内变化, C3植物泡泡刺对这些因子变化的响应比C4植物梭梭和沙拐枣更敏感; 通过类比于欧姆定律, 表明可用气孔导度和VPD的乘积来对蒸腾速率进行线性模拟, 相关性很强。
LI-6400XT Portable Photosynthesis System and Model 1505 Pressure Chamber were used to measure the water vapor exchange process and leaf water potential (Ψ) changes of three dominant shrub species (i.e., C4 plant Haloxylon ammodendron, Calligonum mongolicum and C3 plant Nitraria sphaerocarpa) growing in a desert-oasis ecotone of the central Hexi Corridor.The changes of water transfer factors prior to and following rainfall events during the growing season were compared, the responses of stomatal conductance to main environmental factors and leaf water potential were quantified respectively.The regulation mechanism of stomatal conductance on transpiration of desert shrubs was also analyzed.The results showed that the main factors affecting stomatal conductance of three shrubs were vapor pressure deficit (VPD), air temperature (T) and Ψ in turn: stomatal conductance decreased with the increasing VPD and T and decreased with the decrease in Ψ.The integrated responses of stomatal conductance of these three desert plants to environmental factors and leaf water potential showed that C3 plant Nitraria sphaerocarpa was more sensitive to these factors than C4 plant Haloxylon ammodendron and Calligonum mongolicum.By analogy to Ohm’s law, the product of stomatal conductance and VPD can be used to properly simulate the transpiration rate with a linear relationship.
[1]Anderegg W R L, Wolf A, Arango-Velez A, al et, 2017.Plant water potential improves prediction of empirical stomatal models [J].PLoS ONE, 12(10): 1-17.DOI: 10.5061/dryad.9fp38.
[2]Berry J A, Beerling D J, Franks P J, 2010.Stomata: Key players in the earth system, past and present [J].Current Opinion in Plant Biology, 13(3): 233-240.DOI: 10.1016/j.pbi.2010.04.013.
[3]Buckley T N, Farquhar G D, Mott K A, 1999.Carbon-water balance and patchy stomatal conductance [J].Oecologia, 118(2): 132-143.DOI: org/10.1007/s004420050711.
[4]Canadell J, Jackson R B, Ehleringer J B, al et, 1996.Maximum rooting depth of vegetation types at the global scale [J].Oecologia, 108(4): 583-595.DOI: org/10.1007/BF00329030.
[5]Chaves M M, Pereira J S, Maroco J, al et, 2002.How plants cope with water stress in the field?Photosynthesis and growth [J].Annals of Botany, 89: 907-916.DOI: 10.1093/aob/mcf105.
[6]Dewar R C, 1995.Interpretation of an empirical model for stomatal conductance in terms of guard cell function [J].Plant, Cell & Environment, 18(4): 365-372.DOI: org/10.1111/j.1365-3040. 1995.tb00372.x.
[7]Gu D X, Wang Q, Mallik A, 2018.Non-convergent transpiration and stomatal conductance response of a dominant desert species in central Asia to climate drivers at leaf, branch and whole plant scales [J].Journal of Agricultural Meteorology, 74(1): 9-17.DOI: 10.2480/agrmet.D -17-00007.
[8]Hoshika Y, Osada Y, Marco A, al et, 2017.Global diurnal and nocturnal parameters of stomatal conductance in woody plants and major crops [J].Global Ecology and Biogeography, 27(2): 257-275.DOI: org/10.1111/geb.12681.
[9]Jarvis P G, 1976.The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field [J].Philosophical Transactions of the Royal Society of London, 273(927): 593-610.DOI: org/10.1098/rstb.1976.0035.
[10]Ji X B, Zhao W Z, Kang E S, al et, 2016.Transpiration from three dominant shrub species in a desert-oasis ecotone of arid regions of northwestern China [J].Hydrological Processes, 30(25): 4841-4854.DOI: org/10.1002/hyp.10937.
[11]Jones H G, 1998.Stomatal control of photosynthesis and transpiration [J].Journal of Experimental Botany, 49: 387-398.DOI: 10. 1093/jexbot/49.suppl_1.387.
[12]Kelliher F M, Leuning R, Raupach M R, al et, 1995.Maximum conductances for evaporation from global vegetation types[J].Agricultural & Forest Meteorology, 73(1/2): 1-16.DOI: 10.1016/0168-1923(94)02178-M.
[13]Klein T, 2014.The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviors [J].Functional Ecology, 28(6): 1313-1320.DOI: 10.1111/1365-2435.12289.
[14]Ludlow M M, 1976.Ecophysiology of C<sub>4</sub> Grasses [J].Water and Plant Life, 19: 364-386.DOI: 10.1007/978-3-642-66429-8_22.
[15]Meinzer F C, Woodruff D R, Marias D E, al et, 2016.Mapping 'hydroscapes' along the iso-to anisohydric continuum of stomatal regulation of plant water status [J].Ecology Letters, 19: 1343-1352.DOI: 10.1111/ele.12670.
[16]Monteith J L, 1995.A reinterpretation of stomatal responses to humidity [J].Plant Cell & Environment, 18(4): 357-364.DOI: 10. 1111/j.1365-3040.1995.tb00371.x.
[17]Oren R, Sperry J S, Katul G G, al et, 2010.Survey and synthesis of intra-and interspecific variation in stomatal sensitivity to vapour pressure deficit [J].Plant Cell & Environment, 22(12): 1515-1526.DOI: 10.1046/j.1365-3040.1999.00513.x.
[18]Schimel D S, 2010.Drylands in the earth system [J].Science, 327: 418-419.DOI: 10.1126/science.1184946.
[19]Schulze E D, 1986.Carbon dioxide and water vapor exchange in response to drought in the atmosphere and in the soil [J].Annual Review of Plant Biology, 37(37): 247-274.DOI: 10.1146/annurev.pp.37.060186.001335.
[20]Sperry J S, Venturas M D, Anderegg W R L, al et, 2017.Predicting stomatal responses to the environment from the optimization of photosynthetic gain and hydraulic cost [J].Plant, Cell & Environment, 40(6): 816-830.DOI: 10.1111/pce.12852.
[21]Whitehead D, Okali D U U, Fasehun F E, 1981.Stomatal response to environmental variables in two tropical forest species during the dry season in Nigeria [J].Journal of Applied Ecology, 18(2): 571-587.DOI: 10.2307/2402418.
[22]Xu S Q, Ji X B, Jin B W, al et, 2017.Root distribution of three dominant desert shrubs and their water uptake dynamics [J].Journal of Plant Ecology, 10(05): 780-790.DOI: 10.1093/jpe/rtw079.
[23]Yu M H, Ding G D, Gao G L, al et, 2018.Leaf temperature fluctuations of typical psammophytic plants and their application to stomatal conductance estimation [J].Forests, 9(6): 313-326.DOI: 10.3390/f9060313.
[24]Zeppel M J B, Murray B R, Barton C, al et, 2004.Seasonal responses of xylem sap velocity to VPD and solar radiation during drought in a stand of native trees in temperate Australia [J].Functional Plant Biology, 31(5): 461-470.DOI: 10.1071/FP03220.
[25]Zheng C L, Wang Q, 2014.Water-use response to climate factors at whole tree and branch scale for a dominant desert species in central Asia: <i>Haloxylon ammodendron</i> [J].Ecohydrology, 7(1): 56-63.DOI: 10.1002/eco.1321.
[26]褚建民, 2007.干旱区植物的水分选择性利用研究 [D].北京: 中国林业科学研究院, 1-105.
[27]高冠龙, 冯起, 张小由, 等, 2017.蒸散发模型结合微气象数据模拟陆面蒸散发研究进展[J].高原气象, 36(6): 1630-1637.DOI: 10.7522/j.issn.1000-0534.2016.00115.
[28]龚吉蕊, 赵爱芬, 苏培玺, 等, 2005.黑河流域几个主要植物种光合特征的比较研究[J].中国沙漠, 25(4): 587-592.DOI: 10. 3321/j.issn: 1000-694X.2005.04.023.
[29]李元寿, 贾晓红, 齐艳军, 等, 2019.多年冻土区土壤蒸散发对气候变化的敏感性分析[J].高原气象, 38(6): 1293-1299.DOI: 10.7522/j.issn.1000-0534.2019.00077.
[30]罗丹丹, 王传宽, 金鹰, 2019.植物应对干旱胁迫的气孔调节[J].应用生态学报, 30(12): 4333-4343.
[31]罗欢, 司建华, 赵春彦, 等, 2020.荒漠河岸林胡杨光合参数变化特征及影响因子研究[J]. 高原气象, 39(2): 393-401.DOI: 10.7522/j.issn.1000-0534.2019.00037.
[32]苏培玺, 2019.C<sub>4</sub>植物生物学—荒漠植物生理生态适应性[M].北京: 科学出版社, 99-106.
[33]苏培玺, 严巧娣, 2006.C4荒漠植物梭梭和沙拐枣在不同水分条件下的光合作用特征[J].生态学报, 26(1): 75-82.DOI: 10. 3321/j.issn: 1000-0933.2006.01.011.
[34]苏培玺, 赵爱芬, 张立新, 等, 2003.荒漠植物梭梭和沙拐枣光合作用、 蒸腾作用及水分利用效率特征[J].西北植物学报, 23(1): 11-17.
[35]王亚婷, 唐立松, 2009.古尔班通古特沙漠不同生活型植物对小雨量降雨的响应[J].生态学杂志, 28(6): 1028-1034.
[36]王宇轩, 奥银焕, 李照国, 等, 2021.黑河中下游不同类型下垫面的能量收支差异及其成因研究[J/OL].高原气象.[2021-02-01]..
[37]徐贵青, 李彦, 2009.共生条件下三种荒漠灌木的根系分布特征及其对降水的响应[J].生态学报, 29 (1): 130-137.DOI: 10. 3321/j.issn: 1000-0933.2009.01.016.
[38]许皓, 李彦, 2005.3种荒漠灌木的用水策略及相关的叶片生理表现[J].西北植物学报, 25 (7): 1309-1316.DOI: 10.3321/j.issn: 1000-4025.2005.07.005.
[39]闫珂, 杨广, 何新林, 等, 2020.准噶尔盆地南缘梭梭水分来源与传输规律分析[J].干旱区资源与环境, 34(5): 201-208.
[40]于贵瑞, 王秋凤, 王建林, 等, 2010.植物光合、 蒸腾与水分利用的生理生态学[M].北京: 科学出版社, 113-119.
[41]袁国富, 张佩, 罗毅, 2012.中国温带荒漠植物蒸腾过程模拟的若干问题分析[J].中国沙漠, 32(1): 47-53.
[42]曾晓玲, 刘彤, 张卫宾, 等, 2012.古尔班通古特沙漠西部地下水位和水质变化对植被的影响[J].生态学报, 32(5): 1490-1501.DOI: 10.5846/stxb201101250125.
[43]郑海雷, 黄子琛, 1992.春小麦单叶气孔行为及蒸腾作用的模拟[J].高原气象, 11(4): 423-430.
[44]周海, 赵文智, 何志斌, 2017.两种荒漠生境条件下泡泡刺水分来源及其对降水的响应[J].应用生态学报, 28(7): 2083-2092.DOI: 10.13287/j.1001-9332.201707.021.