综述

干旱、 半干旱区光伏发电设施的生态-水文效应研究评述

  • 吴川东 ,
  • 苏泽兵 ,
  • 刘鹄 ,
  • 赵文智 ,
  • 余海龙
展开
  • <sup>1.</sup>中国科学院西北生态环境资源研究院/中国生态系统研究网络临泽内陆河流域研究站,甘肃 兰州 730000;<sup>2.</sup>兰州大学资源环境学院,甘肃 兰州 730000;<sup>3.</sup>中国科学院内陆河流域生态水文重点实验室,甘肃 兰州 730000;<sup>4.</sup>宁夏大学资源环境学院,宁夏 银川 750021

收稿日期: 2020-08-03

  网络出版日期: 2021-06-28

基金资助

西部之光青年学者A类项目(29Y92962);中国电建集团西北勘测设计研究院有限公司委托项目(XBY-2015-04)

Eco-hydrological Effects of Photovoltaic Power Generation Facilities on Dryland Ecosystems: A Review

  • Chu ,
  • ong WU ,
  • Zebing SU ,
  • Hu LIU ,
  • Wenzhi ZHAO
Expand
  • <sup>1.</sup>Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences / Linze Inland River Basin Research Station,Chinese Ecosystem Research Network,Lanzhou 730000,Gansu,China;<sup>2.</sup>College of Earth and Environmental Sciences,Lanzhou University,Lanzhou 730000,Gansu,China;<sup>3.</sup>Key Laboratory of Ecohydrology of Inland River Basin,Lanzhou 730000,Gansu,China;<sup>4.</sup>College of Resources and Environmental Science,Ningxia University,Yinchuan 750021,Ningxia,China

Received date: 2020-08-03

  Online published: 2021-06-28

摘要

干旱、 半干旱地区具有少雨、 入射辐射强的特点, 是发展大规模光伏产业的理想区域, 但光伏设施的建造运营会改变辐射、 降雨等环境要素的空间分配, 将对干旱、 半干旱区脆弱的生态系统产生影响。从局地微气候、 生态水文过程、 区域生态格局和节能减排等角度评述了光伏发电设施的潜在生态水文效应, 系统总结了近20年来国内外关于光伏产业发展对生态环境影响方面的研究成果。指出干旱、 半干旱区大型光伏设施改善了光伏阵列间局地微气候与土壤温湿度, 使得局地植被盖度和固碳潜力有所增加, 但也产生了一些负面影响, 如破坏了动物的栖息地、 捕食策略和食物可获得性等。认为未来需加强对大型光伏系统影响下的生态水文过程的观测, 识别生态水文变化机制, 建立不同时空尺度下的概念模型和物理模型, 探索“跨界融合”的商业模式, 提高干旱、 半干旱区光伏系统的环境效益和经济效益。

本文引用格式

吴川东 , 苏泽兵 , 刘鹄 , 赵文智 , 余海龙 . 干旱、 半干旱区光伏发电设施的生态-水文效应研究评述[J]. 高原气象, 2021 , 40(3) : 690 -701 . DOI: 10.7522/j.issn.1000-0534.2020.00065

Abstract

Arid and semi-arid regions are characterized by low annual rainfall and high solar radiation, which, together with plentiful land supplies and clear sky conditions, result in an ideal area for developing photovoltaic industry.However, both the construction and operation processes of photovoltaic facilities may put substantial influences on the fragile dryland ecosystems by changing the spatial pattern of local environmental variables (e.g., radiation and rainfall).This paper reviewed those potential impacts of photovoltaic facilities on the dryland ecosystems from the perspectives of local microclimate, eco-hydrological processes, regional ecological pattern, and energy conservation and emissions reduction, and summarized the related research progresses in understanding the eco-environmental effects of photovoltaic generation systems on the local and regional environments during past decades.It was pointed out that the microclimate, soil temperature and humidity between photovoltaic arrays could be improved by photovoltaic facilities in dryland ecosystems, which in turn, may increase the local vegetation coverage and carbon sequestration potential.However, photovoltaic generation systems are also likely to negatively impact the local environments, e.g., destroying animal habitats, limiting their food availability, lowering the regional biodiversity and even threating dryland ecosystem stability.The review indicates that ongoing and future researches should be oriented towards the multi-scale temporal-spatial understanding of the influence of widely-deployed photovoltaic system on dryland ecosystems, through extending the observation scales, and improve the modeling capabilities.Special focus should be put on the development of mechanism-based models for the ecohydrology of dryland environments affected by photovoltaic facilities, and the development of "cross-border integrated" photovoltaic system protocols.

参考文献

[1]Aja O C, Al-Kayiem H H, Abdul K Z A, 2013.Experimental investigation of the effect of wind speed and wind direction on a solar chimney power plant [C]// WIT Transactions on Ecology and the Environment.Southampton: WIT Press, 945-955.DOI: 10. 2495/SC130802.
[2]Aman M M, Solangi K H, Hossain M S, al et, 2015.A review of Safety, Health and Environmental (SHE) issues of solar energy system [J].Renewable & Sustainable Energy Reviews, 41: 1190-1204.DOI: 10.1016/j.rser.2014.08.086.
[3]Araki K, Akisawa A, Kumagai I, al et, 2010.Analysis of shadow by HCPV panels for agriculture applications [C]// Photovoltaic Specialists Conference, 002994-002997.DOI: 10.1109/PVSC. 2010. 5614107.
[4]Araki K, Nagai H, Lee K H, al et, 2017.Analysis of impact to optical environment of the land by flat-plate and array of tracking PV panels [J].Solar Energy, 144: 278-285.DOI: 10.1016/j.solener.2017.01.021.
[5]Armstrong A, Ostle N J, Whitaker J, 2015.Solar Park Impacts on Air and Soil Microclimate [C]// AGU Fall Meeting Abstracts.San Francisco: WILEY, GC51H-04.
[6]Armstrong A, Ostle N J, Whitaker J, 2016.Solar park microclimate and vegetation management effects on grassland carbon cycling [J].Environmental Research Letters, 11(7): 074016.DOI: 10. 1088/1748-9326/11/7/074016.
[7]Asumadu-Sarkodie S, Owusu P A, 2016.Carbon dioxide emissions, GDP, energy use, and population growth: A multivariate and causality analysis for Ghana, 1971-2013 [J].Environmental Science & Pollution Research, 23(13): 13508-13520.DOI: 10.1007/s11356-016-6511-x.
[8]Bazyari S, Keypour R, Farhangi S, al et, 2014.A study on the effects of solar tracking systems on the performance of photovoltaic power plants [J].Journal of Power and Energy Engineering, 2(4): 718-728.DOI: 10.4236/jpee.2014.24096.
[9]Bergesen J D, Heath G A, Thomas G, al et, 2014.Thin-film photovoltaic power generation offers decreasing greenhouse gas emissions and increasing environmental co-benefits in the long term [J].Environmental Science & Technology, 48(16): 9834-9843.DOI: 10.1021/es405539z.
[10]Cagle A, Choi C S, Macknick J, al et, 2017.Impacts of solar PV arrays on physicochemical properties of soil [C]// AGU Fall Meeting Abstracts.New Orleans: WILEY, GC13J-0869.
[11]Capdevila H, Marola A, Herreri?as M, 2013.High resolution shading modeling and performance simulation of sun-tracking photovoltaic systems [J].AIP Conference Proceedings 1556, 201: 201-204.DOI: 10.1063/1.4822231.
[12]Charney J G, Quirk W J, Chow S H, al et, 1977.A comparative study of the effects of albedo change on drought in semi-arid regions [J].Journal of the Atmospheric Sciences, 34(9): 1366-1385.DOI: 10.1175/1520-0469(1977)0342.0.CO; 2.
[13]Charney J G, 1975.Dynamics of deserts and droughts in Sahel [J].Quarterly Journal of Royal Meteorological Society, 101: 193-202.
[14]Clark J M, Ashley D, Wagner M, al et, 2010.Increased temperature sensitivity of net DOC production from ombrotrophic peat due to water table draw-down [J].Global Change Biology, 15(4): 794-807.DOI: 10.1111/j.1365-2486.2008.01683.x.
[15]Creutzig F, Agoston P, Goldschmidt J C, al et, 2017.The underestimated potential of solar energy to mitigate climate change [J].Nature Energy, 2(9): 17140.DOI: 10.1038/nenergy.2017.140.
[16]Dale V H, Efroymson R A, Kline K L, 2011.The land use-climate change-energy nexus [J].Landscape Ecology, 26(6): 755-773.DOI: 10.1007/s10980-011-9606-2.
[17]Dincer F, 2011.The analysis on photovoltaic electricity generation status, potential and policies of the leading countries in solar energy [J].Renewable & Sustainable Energy Reviews, 15(1): 713-720.DOI: 10.1016/j.rser.2010.09.026.
[18]Dincer I, 2000.Renewable energy and sustainable development: A crucial review [J].Renewable & Sustainable Energy Reviews, 2000, 4(2): 157-175.DOI: 10.1016/S1364-0321(99)00011-8.
[19]Diogo P D S G, Castelo B D A, 2018.Is floating photovoltaic better than conventional photovoltaic?Assessing environmental impacts [J].Impact Assessment and Project Appraisal, 36(5): 390-400.DOI: 10.1080/14615517.2018.1477498.
[20]Dominati E, Patterson M, Mackay A, 2010.A framework for classifying and quantifying the natural capital and ecosystem services of soils [J].Ecological Economics, 69(9): 1858-1868.DOI: 10. 1016/j.ecolecon.2010.05.002.
[21]Dorrepaal E, Toet S, Logtestijn R S P V, al et, 2009.Carbon respiration from subsurface peat accelerated by climate warming in the subarctic [J].Nature, 460(7255): 616-619.DOI: 10.1038/nature08216.
[22]Dupraz C, Marrou H, Talbot G, al et, 2011.Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes [J].Renewable Energy, 36(10): 2725-2732.DOI: 10.1016/j.renene.2011.03.005.
[23]Elamri Y, Cheviron B, Lopez J M, al et, 2018.Water budget and crop modelling for agrivoltaic systems: Application to irrigated lettuces [J].Agricultural Water Management, 208: 440-453.DOI: 10.1016/j.agwat.2018.07.001.
[24]Elamri Y, Cheviron B, Mange A, al et, 2017.Rain concentration and sheltering effect of solar panels on cultivated plots[J].Hydrology and Earth System Sciences, 22(2): 1285-1298.DOI: 10.5194/hess-22-1285-2018.
[25]Fatnassi H, Poncet C, Bazzano M M, al et, 2015.A numerical simulation of the photovoltaic greenhouse microclimate [J].Solar Energy, 120: 575-584.DOI: 10.1016/j.solener.2015.07.019.
[26]Fayaz H, Rahim N A, Saidur R, al et, 2011.Solar energy policy: Malaysia vs developed countries [C]// 2011 IEEE 1st Conference on Clean Energy and Technology (CET ).Kuala Lumpur: IEEE, 374-378.DOI: 10.1109/CET.2011.6041512.
[27]Feng Y C, Qiu G Y, Zhang Q T, 2014.Determination of canopy-shadow-affected area in sparse steppes and its effects on evaporation and evapotranspiration [J].Ecohydrology, 7(6): 1589-1603.DOI: 10.1002/eco.1482.
[28]Frass-Ehrfeld C, 2009.Renewable energy sources: A chance to combat climate change [M].Alphen aan den Rijn: Kluwer Law International.
[29]Fthenakis V, Blunden J, Green T, al et, 2011.Large photovoltaic power plants: Wildlife impacts and benefits [C]// 2011 37th IEEE Photovoltaic Specialists Conference.Seattle: IEEE, 002011-002016.DOI: 10.1109/PVSC.2011.6186348.
[30]Gunerhan H, Hepbasli A, Giresunlu U, 2009.Environmental impacts from the solar energy systems [J].Energy Sources, 31(2): 131-138.DOI: 10.1080/15567030701512733.
[31]Han L J, Wang P X, Yang H, al et, 2006.Study on NDVI-Ts space by combining LAI and evapotranspiration [J].Science in China, 49(7): 747-754.
[32]Hassanpour A E, Higgins C W, 2015.Investigation of microclimatology under solar panel [C]// AGU Fall Meeting Abstracts.San Francisco: WILEY, A33B-0158.
[33]Hernandez R R, Easter S B, Murphy-Mariscal M L, al et, 2014.Environmental impacts of utility-scale solar energy [J].Renewable & Sustainable Energy Reviews, 29(7): 766-779.DOI: 10. 1016/j.rser.2013.08.041.
[34]Hernandez R R, Hoffacker M K, Murphymariscal M L, al et, 2015.Solar energy development impacts on land cover change and protected areas [J].Proceedings of the National Academy of Sciences of the United States of America, 112(44): 13579-13584.DOI: 10.1073/pnas.1517656112.
[35]Hoffmann S, Koehl M, 2013.Investigation on the impact of macro-and micro-climate on the potential induced degradation [C]//.2013 IEEE 39th Photovoltaic Specialists Conference (PVSC).IEEE, 1822-1825.DOI: 10.1109/PVSC.2013 6744496.
[36]Hu A, Levis S, Meehl G A, al et, 2016.Impact of solar panels on global climate [J].Nature Climate Change, 6(3): 290-294.DOI: 10.1038/nclimate2843.
[37]IRENA, 2020.Renewable capacity statistics 2020 [R/OL].Internatonal Rewable Energy Agency.[2020-07-15]..
[38]Jahanfar A, Drake J, Sleep B, al et, 2016.Shading effects of photovolatic panels on the evapotranspiration process in extensive green roofs [J].Novatech: 1-6.
[39]Jahanfar A, Drake J, Sleep B, al et, 2019.Evaluating the shading effect of photovoltaic panels on green roof discharge reduction and plant growth [J].Journal of Hydrology, 568: 919-928.DOI: 10.1016/j.jhydrol.2018.11.019.
[40]Kande S M, Wagh M M, Ghane S G, 2016.Experimental analysis of effect of vegetation under PV solar panel on performance of polycrystalline solar panel [J].Journal of Fundamentals of Renewable Energy & Applications, 6(5): 1000215.DOI: 10.4172/2090-4541.1000215.
[41]Kannan N, Vakeesan D, 2016.Solar energy for future world:A review [J].Renewable and Sustainable Energy Reviews, 62: 1092-1105.DOI: 10.1016/j.rser.2016.05.022.
[42]Kannan R, Leong K C, Osman R, al et, 2006.Life cycle assessment study of solar PV systems: An example of a 2.7 kWp distributed solar PV system in Singapore [J].Solar Energy, 80(5): 555-563.DOI: 10.1016/j.solener.2005.04.008.
[43]Keller B, Costa A M S, 2011.A Matlab GUI for calculating the solar radiation and shading of surfaces on the earth [J].Computer Applications in Engineering Education, 19(1): 161-170.DOI: 10.1002/cae.20301.
[44]Kim H C, Fthenakis V M, 2006.Life cycle energy demand and greenhouse gas emissions from an amonix high concentrator photovoltaic system [C]// IEEE World Conference on Photovoltaic Energy Conversion.Waikoloa: IEEE, 628-631.DOI: 10.1109/WCPEC.2006.279533.
[45]Kousari M R, Ahani H, Hakimelahi H, 2013.An investigation of near surface wind speed trends in arid and semiarid regions of Iran [J].Theoretical & Applied Climatology, 2013, 114(1-2): 153-168.DOI: 10.1007/s00704-012-0811-y.
[46]Krauter S, Rüther R, 2004.Considerations for the calculation of greenhouse gas reduction by photovoltaic solar energy [J].Renewable Energy, 29(3): 345-355.DOI: 10.1016/S0960-1481(03)00251-9.
[47]Kumar P, Gvot.P, Kharsawan, 2014.Solar photovoltaic technology: A review [J].Water and Energy International, 57(6): 23-27.
[48]Li Y, Kalnay E, Motesharrrei S, al et, 2018.Climate model shows large-scale wind and solar farms in the Sahara increase rain and vegetation [J].Science, 361: 1019-1022.DOI: 10.1126/science.aar5629.
[49]Liu Y, Zhang R Q, Huang Z, al et, 2019.Solar photovoltaic panels significantly promote vegetation recovery by modifying the soil surface microhabitats in an arid sandy ecosystem [J].Land Degradation & Development, 30(18): 2177-2186.DOI: 10.1002/ldr.3408.
[50]Lorenz K, Lal R, 2005.The depth distribution of soil organic carbon in relation to land use and management and the potential of carbon sequestration in subsoil horizons [J].Advances in Agronomy, 88(5): 35-66.DOI: 10.1016/S0065-2113(05)88002-2.
[51]Marco A D, Petrosillo I, Semeraro T, al et, 2014.The contribution of Utility-Scale Solar Energy to the global climate regulation and its effects on local ecosystem services [J].Global Ecology & Conservation, 2: 324-337.DOI: 10.1016/j.gecco.2014.10.010.
[52]Marrou H, Dufour L, Wery J, 2013a.How does a shelter of solar panels influence water flows in a soil-crop system? [J].European Journal of Agronomy, 50(5): 38-51.DOI: 10.1016/j.eja. 2013. 05.004.
[53]Marrou H, Guilioni L, Dufour L, al et, 2013b.Microclimate under agrivoltaic systems: Is crop growth rate affected in the partial shade of solar panels? [J].Agricultural and Forest Meteorology, 177(6): 117-132.DOI: 10.1016/j.agrformet.2013.04.012.
[54]Marrou H, Wery J, Dufour L, al et, 2013c.Productivity and radiation use efficiency of lettuces grown in the partial shade of photovoltaic panels [J].European Journal of Agronomy, 44(2): 54-66.DOI: 10.1016/j.eja.2012.08.003.
[55]Masson V, Bonhomme M, Salagnac J, al et, 2014.Solar panels reduce both global warming and urban heat island [J].Frontiers in Environmental Science, 2(14): 1-10.DOI: 10.3389/fenvs. 2014.00014.
[56]Millstein D, Menon S, 2011.Regional climate consequences of large-scale cool roof and photovoltaic array deployment [J].Environmental Research Letters, 6(3): 034001.DOI: 10.1088/1748-9326/6/3/034001.
[57]Morris V L, 1980.Cleaning agents and techniques for concentrating solar collectors [J].Solar Energy Materials, 3(1-2): 35-55.DOI: 10.1016/0165-1633(80)90048-9.
[58]Muneer T, Asif M, Kubie J, 2003.Generation and transmission prospects for solar electricity: UK and global markets [J].Energy Conversion and Management, 44(1): 35-52.DOI: 10.1016/S0196-8904(02)00043-2.
[59]Nemet G F, 2009.Net radiative forcing from widespread deployment of photovoltaics [J].Environmental Science & Technology, 43(6): 2173-2178.DOI: 10.1021/es801747c.
[60]Niemeier U, Schmidt H, Alterskjaer K, al et, 2013.Solar irradiance reduction via climate engineering: Impact of different techniques on the energy balance and the hydrological cycle [J].Journal of Geophysical Research, 118(21): 11905-11917.DOI: 10.1002/2013JD020445.
[61]Northrup J M, Wittemyer G, 2012.Characterising the impacts of emerging energy development on wildlife, with an eye towards mitigation [J].Ecology Letters, 16(1): 112-125.DOI: 10. 1111/ele.12009.
[62]Omer A M, 2008.Green energies and the environment [J].Renewable and Sustainable Energy Reviews, 12(7): 1789-1821.DOI: 10. 1016/j.rser.2006.05.009.
[63]Ostle N J, Levy P E, Evans C D, al et, 2009.UK land use and soil carbon sequestration [J].Land Use Policy, 26S(): 274-283.DOI: 10.1016/j.landusepol.2009.08.006.
[64]Owusu P A, Asumadu-Sarkodie S, 2016.A review of renewable energy sources sustainability issues and climate change mitigation [J].Cogent Engineering, 3(1): 1167990.DOI: 10.1080/23311916. 2016.1167990.
[65]Panwar N L, Kaushik S C, Kothari S, 2011.Role of renewable energy sources in environmental protection: A review [J].Renewable & Sustainable Energy Reviews, 15(3): 1513-1524.DOI: 10. 1016/j.rser.2010.11.037.
[66]Parrat R N, Kopp G A, 2013.Velocity measurements around low-profile, tilted, solar arrays mounted on large flat-roofs, for wall normal wind directions [J].Journal of Wind Engineering & Industrial Aerodynamics, 123: 226-238.DOI: 10.1016/j.jweia.2013. 09.001.
[67]Pringle A M, Handler R M, Pearce J M, 2017.Aquavoltaics: Synergies for dual use of water area for solar photovoltaic electricity generation and aquaculture [J].Renewable & Sustainable Energy Reviews, 80: 572-584.DOI: 10.1016/j.rser.2017.05.191.
[68]Rebitzer G, Ekvall T, Frischknecht R, al et, 2004.Life cycle assessment: Part 1: Framework, goal and scope definition, inventory analysis, and applications [J].Environment International, 30(5): 701-720.DOI: 10.1016/j.envint.2003.11.005.
[69]Rose T, Wollert A, 2015.The dark side of photovoltaic—3D simulation of glare assessing risk and discomfort [J].Environmental Impact Assessment Review, 52: 24-30.
[70]Roy S B, Pacala S W, Walko R L, 2004.Can large wind farms affect local meteorology? [J].Journal of Geophysical Research, 109(19): 1-6.DOI: 10.1029/2004JD004763.
[71]Scherba A, Sailor D J, Rosenstiel T N, al et, 2011.Modeling impacts of roof reflectivity, integrated photovoltaic panels and green roof systems on sensible heat flux into the urban environment [J].Building & Environment, 46(12): 2542-2551.DOI: 10.1016/j.buildenv.2011.06.012.
[72]Schwingshackl C, Hirschi M, Seneviratne S I, 2017.Quantifying spatio-temporal variations of soil moisture control on surface energy balance and near-surface air temperature [J].Journal of Climate, 30(18): 7105-7124.DOI: 10.1175/JCLI-D-16-0727.1.
[73]Silva G D, Branco D A, 2018.Is floating photovoltaic better than conventional photovoltaic? Assessing environmental impacts[J].Impact Assessment and Project Appraisal, 36(5): 390-400.DOI: 10.1080/14615517.2018.1477498.
[74]Solangi K H, Islam M R, Saidur R, al et, 2011.A review on global solar energy policy [J].Renewable & Sustainable Energy Reviews, 15(4): 2149-2163.DOI: 10.1016/j.rser.2011.01.007.
[75]Spalart P R, 2009.Detached-eddy simulation [J].Annual Review of Fluid Mechanics, 41: 181-202.DOI: 10.1146/annurev.fluid. 010908.165130.
[76]Suuronen A, 2017a.Ecological and social impacts of photovoltaic solar power plants and optimization of their locations in northern Chile [J].Jyv?skyl? Studies in Biological and Environmental Science.
[77]Suuronen A, Munoz-Escobar C, Lensu A, al et, 2017b.The influence of solar power plants on microclimatic conditions and the biotic community in Chilean Desert environments [J].Environmental Management, 60(4): 630-642.DOI: 10.1007/s00267-017-0906-4.
[78]Tanner K E, Kara A, Moore‐O'Leary, al et, 2020.Simulated solar panels create altered microhabitats in desert landforms [J].Ecosphere, 2020, 11(4): 1-21.DOI: 10.1002/ecs2.3089.
[79]Tanner K, Moore K, Pavlik B, 2014.Changes to shade and water regimes imposed by solar development affect desert plant performance and community attributes [C]// 99th ESA Annual Convention.California: Allenpress, 42(2): 15-16.
[80]Tezuka T, Okushima K, Sawa T, 2002.Carbon tax for subsidizing photovoltaic power generation systems and its effect on carbon dioxide emissions [J].Applied Energy, 72(3): 677-688.DOI: 10.1016/S0306-2619(02)00057-0.
[81]Thorne J H, Boynton R, Flint L E, al et, 2015.The magnitude and spatial patterns of historical and future hydrologic change in California's watersheds [J].Ecosphere, 6(2): 1-30.DOI: 10.1890/ES14-00300.1.
[82]Tsang M P, Sonnemann G W, Bassani D M, 2016.Life-cycle assessment of cradle-to-grave opportunities and environmental impacts of organic photovoltaic solar panels compared to conventional technologies [J].Solar Energy Materials & Solar Cells, 156: 37-48.DOI: 10.1016/j.solmat.2016.04.024.
[83]Tsoutsos T, Frantzeskaki N, Gekas V, 2005.Environmental impacts from the solar energy technologies [J].Energy Policy, 2005, 33(3): 289-296.DOI: 10.1016/S0301-4215(03)00241-6.
[84]Weinstock D, Appelbaum J, 2009.Optimization of solar photovoltaic fields [J].Journal of Solar Energy Engineering, 131(3): 376-385.DOI: 10.1115/1.3142705.
[85]Wu Z Y, Hou A P, Chang C, al et, 2014.Environmental impacts of large-scale CSP plants in northwestern China [J].Environmental Science: Processes & Impacts, 16(10): 2432-2441.DOI: 10.1039/c4em00235k.
[86]Xu K, Zhang H X, 2014.Environmental impacts of large-scale solar plants on desert region: modeling ground temperature [J].International Journal of Smart Grid and Clean Energy, 3(4): 390-394.DOI: 10.12720/sgce.3.4.390-394.
[87]Yang J J, He Z B, Du J, al et, 2017.Soil water variability as a function of precipitation, temperature, and vegetation: A case study in the semiarid mountain region of China [J].Environmental Earth Sciences, 76(5): 206.DOI: 10.1007/s12665-017-6521-0.
[88]Yu W, Sheng Z, Hong H, 2014.Cost and CO<sub>2</sub> reductions of solar photovoltaic power generation in China: Perspectives for 2020 [J].Renewable & Sustainable Energy Reviews, 39: 370-380.DOI: 10.1016/j.rser.2014.07.027.
[89]Zhang H L, Baeyens J, Degreve J, al et, 2013.Concentrated solar power plants: review and design methodology [J].Renewable & Sustainable Energy Reviews, 22(22): 466-481.DOI: 10.1016/j.rser.2013.01.032.
[90]Zhao Z Y, Zhang S Y, Zuo J, 2011.A critical analysis of the photovoltaic power industry in China-From diamond model to gear model [J].Renewable and Sustainable Energy Reviews, 15(9): 4963-4971.DOI: 10.1016/j.rser.2011.07.057.
[91]Zhong Z W, Song B, Loh P E, 2011.LCAs of a polycrystalline photovoltaic module and a wind turbine [J].Renewable Energy, 36(8): 2227-2237.DOI: 10.1016/j.renene.2011.01.021.
[92]方精云, 郭兆迪, 朴世龙, 等, 2007.1981—2000年中国陆地植被碳汇的估算 [J].中国科学(地球科学), 37(6): 804-812.DOI: 10.1360/zd2007-37-6-804.
[93]高晓清, 杨丽薇, 吕芳, 等, 2016.光伏电站对格尔木荒漠地区空气温湿度的影响研究 [J].太阳能学报, 37(11): 2909-2915.
[94]兰晓波, 林纾, 钱莉, 等, 2010.河西走廊东部太阳能分布特征及指数预报 [J].资源科学, 32(12): 2419-2426.
[95]李芬, 陈正洪, 何明琼, 等, 2011.太阳能光伏发电的现状及前景 [J].水电能源科学, 29(12): 188-192.DOI: 10.3969/j.issn. 1000-7709.2011.12.054.
[96]孙家欢, 王涛, 薛娴, 等, 2016.降尘对中国北方主要城市光伏电站发电量的影响 [J].中国沙漠, 36(4): 932-942.DOI: 10.7522/j.issn.1000-694X.2016.0042.
[97]田玮, 王一平, 韩立君, 等, 2005.聚光光伏系统的技术进展 [J].太阳能学报, 26(4): 597-604.DOI: 10.3321/j.issn: 0254-0096.2005.04.028.
[98]王蕊, 王慧, 李栋梁, 2019.中国西北地区东部盛夏降水特征及对初春地表感热异常的响应[J].高原气象, 38(6): 1241-1250.DOI: 10.7522/j.issn.1000-0534.2018.00153.
[99]王宗敏, 丁一汇, 张迎新, 等, 2012.太行山东麓焚风天气的统计特征和机理分析Ⅱ: 背风波对焚风产生和传播影响的个例分析 [J].高原气象, 31(2): 555-561.
[100]谢国辉, 李娜娜, 汪晓露, 等, 2018.全球大型光伏电站基地开发潜力分析 [J].智慧电力, 46(4): 7-11.
[101]殷代英, 马鹿, 屈建军, 2017.大型光伏电站对共和盆地荒漠区微气候的影响 [J].水土保持通报, 37(3): 15-21.
[102]赵鹏宇, 2016.光伏电板对地表土壤颗粒及小气候的影响 [D].呼和浩特: 内蒙古农业大学.
[103]赵雪, 邹志荣, 许红军, 等, 2013.光伏日光温室夏季光环境及其对番茄生长的影响 [J].西北农林科技大学学报(自然科学版), 41(12): 93-99.
[104]中国光伏行业协会, 2018.2018年光伏发电统计信息 [EB/OL].[2020-07-15]..
文章导航

/