综述

青藏高原陆气相互作用对东亚区域气候影响的研究进展

  • 赖欣 ,
  • 范广洲 ,
  • 华维 ,
  • 丁旭
展开
  • 成都信息工程大学大气科学学院/高原大气与环境四川省重点实验室/气候与环境变化联合实验室, 四川 成都 610225;中国民用航空新疆空中交通管理局, 新疆 乌鲁木齐 830016

收稿日期: 2021-03-01

  修回日期: 2021-09-06

  网络出版日期: 2021-12-28

基金资助

国家自然科学基金项目(42075081, 42075019, 41905008); 国家重点研发计划项目(2018YFC1505702); 第二次青藏高原综合科学考察研究项目(2019QZKK0105, 2019QZKK010203)

Progress in the Study of Influence of the Qinghai-Xizang Plateau Land Atmosphere Interaction on East Asia Regional Climate

  • LAI Xin ,
  • FAN Guangzhou ,
  • HUA Wei ,
  • DING Xu
Expand
  • College of Atmospheric Sciences/Plateau Atmosphere and Environment Key Laboratory of Sichuan Province/Joint Laboratory of Climate and Environment Change, Chengdu University of Information Technology, Chengdu 610225, Sichuan, China;Civil Aviation Air Traffic Control Bureau of Xinjiang Meteorological Center, Urumqi 830016, Xinjiang, China

Received date: 2021-03-01

  Revised date: 2021-09-06

  Online published: 2021-12-28

摘要

青藏高原陆气相互作用对东亚区域天气气候有重要影响, 其中高原植被及热力作用的气候效应是高原陆气相互作用的两个重要内容。本文总结了高原植被和陆-气水热交换的变化特征, 高原植被及热力作用对高原季风、 东亚季风和东亚区域气候影响的研究成果。结果表明: (1)高原归一化植被指数(Normalized Difference Vegetation Index, NDVI)、 植被覆盖度和植被净初级生产力(Net Primary Production, NPP)呈从东南向西北减少的趋势。近几十年, 高原NDVI、 植被覆盖度和NPP总体上呈上升趋势, 西藏东南部年平均和生长季平均叶面积指数(Leaf Area Index, LAI)均呈增加趋势。(2)高原感热在20世纪80年代以后呈显著减弱趋势, 夏季高原大部分地区地表潜热通量呈增加趋势。(3)高原植被与高原地表热源之间呈显著正相关关系。当高原植被退化成荒漠, 会减少地表吸收的净辐射, 减弱地表热源, 导致南亚高压位置偏西, 西太平洋副高减弱, 中国南方和东北地区降水增加, 北方地区降水减少。(4)当高原大气热源偏强(弱)时, 高原夏季风偏强(弱)。高原大气热源与东亚夏季风的建立和维持密切相关。4 -5月中旬高原加热效应使大气柱增温, 有利于四周大气向高原汇合及热带暖湿气流北上, 导致南海夏季风爆发。高原加热作用也有利于南海夏季风的维持。近几十年高原春季感热减弱, 造成我国东部降水北方异常偏少、 南方异常偏多。高原上空各层年平均大气温度与高原夏季风显著相关。在年际、 年代际尺度上, 当高原对流层低层至中上部升温而对流层上部降温时, 我国江南和华南夏季降水显著偏多, 东北降水显著偏少。

本文引用格式

赖欣 , 范广洲 , 华维 , 丁旭 . 青藏高原陆气相互作用对东亚区域气候影响的研究进展[J]. 高原气象, 2021 , 40(6) : 1263 -1277 . DOI: 10.7522/j.issn.1000-0534.2021.zk018

Abstract

The land atmosphere interaction over the Qinghai-Xizang Plateau (QXP) has important influences on the weather and climate of East Asia, and the climate effect of vegetation and thermodynamic processes over the TP are two major topics.This paper provides a review on variation characteristics of the QXP vegetation and land atmosphere water and heat exchange, influence of the QXP vegetation and thermodynamic processes on the QXP monsoon and East Asian monsoon and regional climate of East Asia.The results show that: (1) The Normalized Difference Vegetation Index (NDVI), vegetation coverage and Net Primary Production (NPP) over the QXP decreased from southeast to northwest.Generally, in recent decades the NDVI, vegetation coverage and NPP increased over the QXP, Annual Leaf Area Index (LAI) and LAI in the growing season increased over southeast Tibet.(2) The Sensible Heat (SH) flux over the QXP significantly decreased since 1980.The Latent Heat (LE) flux over the QXP significantly increased in summer from 2000 to 2016.(3) The QXP vegetation has significant and positive correlations with QXP surface heat source.The degradation of vegetation to desert over the QXP decreased the net radiation absorbed by the surface, weakening the surface heat source, leading to a westward extending of the south Asia high and a weakening of the western Pacific subtropical high.As a result, Precipitation in southern and northeastern China increased, and precipitation in northern China decreased.(4) When the QXP atmospheric heat source is strong (weak), the QXP summer monsoon is strong (weak).The QXP heat source is closely correlated with the establishment and maintenance of the East Asian summer monsoon.QXP heating effect make air column warming from April to mid-May, and it is beneficial to the surrounding air converging to the QXP and tropical warm-moist air proceeding northward, leading to the outbreak of the South China Sea (SCS) summer monsoon.The QXP heating effect is also beneficial to maintaining the SCS summer monsoon.The QXP SH flux decreased in recent decades, making less precipitation in the north and more precipitation in the south over eastern China.The annual mean air temperature in each layer over the QXP and the QXP summer monsoon index has significant correlations.On the interannual and decadal timescales, when the temperature over the QXP increases in the lower to middle-upper troposphere and decreases in the high troposphere, there is more precipitation in the regions south of the Yangtze River and southern China and less precipitation in the northeastern China.

参考文献

[1]ChenB X, ZhangX Z, TaoJ, alet, 2014.The impact of climate change and anthropogenic activities on alpine grassland over the Qinghai-Tibet Plateau[J].Agricultural and Forest Meteorology, 189/190: 11-18.
[2]ChenJ L, WenJ, TianH, alet, 2018.A Study of Soil Thermal and Hydraulic Properties and Parameterizations for CLM in the SRYR[J].Journal of Geophysical Research Atmospheres, 123: 8487-8499.
[3]ChenJ M, BlackT A, 1992.Defining leaf area index for non-flat leaves[J].Plant Cell and Environment, 15(4): 421-429.
[4]DuanA M, WangM R, LeiY H, alet, 2013.Trends in summer rainfall over China associated with the Tibetan Plateau sensible heat source during 1980 -2008[J].Journal of Climate, 26(1): 261-275.
[5]DuanA M, WuG X, 2008.Weakening Trend in the Atmospheric Heat Source over the Tibetan Plateau during Recent Decades[J].Journal of Climate, 21: 3149-3164.
[6]GaoY, ZhouX, WangQ, alet, 2013.Vegetation net primary productivity and its response to climate change during 2001 -2008 in the Tibetan Plateau[J].Science of the Total Environment, 444: 356-362.
[7]HahnD G, ManabeS, 1975.The role of Mountains in the South Asian monsoon circulation[J].Journal of the Atmospheric Sciences, 32(8): 1515-1541.
[8]HanC B, MaY M, ChenX L, alet, 2017.Trends of land surface heat fluxes on the Tibetan Plateau from 2001 to 2012[J].International Journal of Climatology, 37(14): 4757-4767.
[9]HanY Z, MaW Q, MaY M, alet, 2019.Variations of Surface heat fluxes over the Tibetan Plateau before and after the onset of the South Asian Summer Monsoon during 1979 -2016[J].Journal of Meteorological Research, 33(3): 491-500.
[10]HuaW, LinZ X, GuoD L, alet, 2019.Simulated long-term vegetation-climate feedbacks in the Tibetan Plateau[J].Asia-Pacific Journal of Atmospheric Sciences, 55(Suppl): 41-52.
[11]LaiX, GongY F, 2017.Relationship between atmospheric heat source over the Tibetan Plateau and precipitation in the Sichuan-Chongqing region during summer[J].Journal of Meteorological Research, 31(3): 555-566.
[12]LiZ G, LyuS H, WenL J, alet, 2018.Effect of roughness lengths on surface energy and the planetary boundary layer height over high-altitude Ngoring Lake[J].Theoretical and Applied Climatology, 133: 1191-1205.
[13]LiuC Y, DongX F, LiuY Y, 2015.Changes of NPP and their relationship to climate factors based on the transformation of different scales in Gansu, China[J].CATENA, 125: 190-199.
[14]LiuR, WenJ, WangX, alet, 2021.Estimates of daily evapotranspiration in the source region of the Yellow River combining visible/near-infrared and microwave remote sensing[J].Remote Sensing, 13(1): 53.
[15]LiuS L, ZhangY Q, ChengF Y, alet, 2017.Response of grassland degradation to drought at different time-scales in Qinghai province: Spatio-temporal characteristics, correlation, and implications[J].Remote Sensing, 9(12): 1329.
[16]LiuX D, ChenB D, 2000.Climatic warming in the Tibetan Plateau during recent decades[J].International Journal of Climatology, 20: 1729-1742.
[17]LiuY M, WuG X, HongJ L, alet, 2012.Revisiting Asian monsoon formation and change associated with Tibetan Plateau forcing.II: Change[J].Climate Dynamic, 39 (5): 1183-1195.
[18]LuoS Q, FangX W, LyuS H, alet, 2017a.Interdecadal Changes in the Freeze Depth and Period of Frozen Soil on the Three Rivers Source Region in China from 1960 to 2014[C]//19th EGU General Assembly, EGU2017, proceedings from the conference held 23-28 April, 2017 in Vienna, Austria., p.6008.
[19]LuoS Q, FangX W, LyuS H, alet, 2017b.Improving CLM4.5 simulations of land-atmosphere exchange during freeze-thaw processes on the Tibetan Plateau[J].Journal of Meteorological Research, 31(5): 916-930.
[20]MaW Q, MaY M, 2016.Modeling the influence of land surface flux on the regional climate of the Tibetan Plateau[J].Theoretical and Applied Climatology, 125: 45-52.
[21]MaY M, HuZ Y, XieZ P, alet, 2020.A long-term (2005-2016) dataset of hourly integrated land-atmosphere interaction observations on the Tibetan Plateau[J].Earth System Science Date, 12: 2937-2957.
[22]MaY M, MaW Q, ZhongL, alet, 2017.Monitoring and Modeling the Tibetan Plateau's climate system and its impact on East Asia[J].Scientific Reports, 7: 44574.
[23]MaY M, ZhuZ, ZhongL, alet, 2014.Combining MODIS, AVHRR and in situ data for evapotranspiration estimation over heterogeneous landscape of the Tibetan Plateau[J].Atmospheric Chemistry and Physics, 14(3): 1507-1515.
[24]ShenM G, PiaoS L, JeongS J, alet, 2015.Evaporative cooling over the Tibetan Plateau induced by vegetation growth[J].Proceedings of the National Academy of Sciences of the United States of America, 112(30): 9299-9304.
[25]SuZ B, RosnayP D, WenJ, alet, 2013.Evaluation of ECMWF's soil moisture analyses using observations on the Tibetan Plateau[J].Journal of Geophysical Research, 118(11): 5304-5318.
[26]SuZ, 2002.The Surface Energy Balance System (SEBS) for estimation ofturbulent heat fluxes[J].Hydrology Earth System Sciences, 6(1): 85-100.
[27]SunJ, QinX J, 2016.Precipitation and temperature regulate the seasonal changes of NDVI across the Tibetan Plateau[J].Environmental earth sciences, 75: 291.
[28]WangC H, YangK, LiY L, alet, 2017.Impacts of spatiotemporal anomalies of Tibetan Plateau snow cover on summer precipitation in eastern China[J].Journal of Climate, 30(3): 885-903.
[29]WuG X, DuanA M, LiuY M, alet, 2015.Tibetan Plateau climate dynamics: Recent research progress and outlook[J].National Science Review, 2(1): 100-116.
[30]WuG X, LiuY M, DongB W, alet, 2012a.Revisiting Asian monsoon formation and change associated with Tibetan Plateau forcing.I: Formation[J].Climate Dynamics, 39(5): 1169-1181.
[31]WuG X, LiuY M, HeB, alet, 2012b.Thermal controls on the Asian summer monsoon[J].Scientific Report, 2: 404.
[32]WuG X, LiuY M, ZhangQ, alet, 2007.The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate[J].Journal of Hydrometeorology, 8(4): 770-789.
[33]WuT W, QianZ A, 2003.The relation between the Tibetan winter snow and the Asian summer monsoon and rainfall: An observational investigation[J].Journal of Climate, 16(12): 2038-2051.
[34]XiaoZ X, DuanA M, 2016.Impacts of Tibetan Plateau snow cover on the interannual variability of the East Asian summer monsoon[J].Journal of Climate, 29(23): 8495-8514.
[35]XvH J, WangX P, ZhangX X, 2016.Alpine grasslands response to climatic factors and anthropogenic activities on the Tibetan Plateau from 2000 to 2012[J].Ecological Engineering, 92: 251-259.
[36]XvX D, GuoJ B, KoikeT, alet, 2012.“Downstream Effect” of winter snow cover over the eastern Tibetan Plateau on climate anomalies in East Asia[J].Journal of the Meteorological Society of Japan, 90: 113-130.
[37]XvX D, LuC G, DingY H, alet, 2013.What is the relationship between China summer precipitation and the change of apparent heat source over the Tibetan Plateau?[J].Atmospheric Science Letters, 2013, 14(4): 227-234.
[38]YangK, GuoX F, WuB Y, 2011.Recent trends in surface sensible heat flux on the Tibetan Plateau[J].Science China Earth Sciences, 54(1): 19-28.
[39]YuanY, LaiX, GongY F, alet, 2020.The impacts of late spring soil moisture in the Tibetan Plateau on summer precipitation in eastern China[J].International Journal of Climatology, 41(2): 862-877.
[40]ZhangJ Y, WuL Y, HuangG, alet, 2011.The role of May vegetation greenness on the southeastern Tibetan Plateau for East Asian summer monsoon prediction[J].Journal of Geophysical Research, 116: D05106.
[41]ZhangY, YanD D, WenX H, alet, 2020.Comparative analysis of the meteorological elements simulated by different land surface process schemes in the WRF model in the Yellow River source region[J].Theoretical and applied climatology, 139: 145-162.
[42]ZhouD W, FanG Z, HuangR H, alet, 2007.Interannual variability of the normalized difference vegetation index on the Tibetan Plateau and its relationship with climate change[J].Advances in Atmospheric Sciences, 24(3): 474-484.
[43]ZhouX J, ZhaoP, ChenJ M, alet, 2009.Impacts of thermodynamic processes over the Tibetan Plateau on the Northern Hemispheric climate[J].Science China, Series D: Earth Sciences, 52(11): 1679-1693.
[44]ZhuL H, HuangG, FANG Z, alet, 2018.Elevation-dependent sensible heat flux trend over the Tibetan Plateau and its possible causes[J].Climate Dynamics, 52(7): 3997-4009.DOI: 10. 1007/s00382-018-4360-7.
[45]ZuoZ Y, ZhangR H, ZhaoP, 2011.The relation of vegetation over the Tibetan Plateau to rainfall in China during the boreal summer[J].Climate dynamics, 36: 1207-1219.
[46]曹晓云, 陈爱军, 肖建设, 等, 2019.地表反照率与高原夏季风爆发关系分析[J].气候与环境研究, 24(6): 785-794.
[47]曾钰婵, 2016.高原热力作用对高原季风和东亚季风的影响研究[D].成都: 成都信息工程大学, 1-48.
[48]曾钰婵, 范广洲, 赖欣, 等, 2016.青藏高原季风活动与大气热源/汇的关系[J].高原气象, 35(5): 1148-1156.DOI: 10.7522/j.issn.1000-0534.2015.00093.
[49]陈渤黎, 罗斯琼, 吕世华, 等, 2017.基于CLM 模式的青藏高原土壤冻融过程陆面特征研究[J].冰川冻土, 39(4): 760-770.
[50]陈金雷, 文军, 王欣, 等, 2017.黄河源高寒湿地-大气间暖季水热交换特征及关键影响参数研究[J].大气科学, 41 (2): 302-312.
[51]陈舒婷, 郭兵, 杨飞, 等, 2020.2000 -2015年青藏高原植被NPP时空变化格局及其对气候变化的响应[J].自然资源学报, 35(10): 2511-2527.
[52]陈宇航, 范广洲, 赖欣, 等, 2016.青藏高原复杂下垫面能量和水分循环季节变化特征分析[J].气候与环境研究, 21(5): 586-600.
[53]谌芸, 李强, 李泽椿, 等, 2006.青藏高原东北部强降水天气过程的气候特征分析[J].应用气象学报, 17(增刊): 98-103.
[54]程译萱, 范广洲, 张永莉, 等, 2018.青藏高原及周边地区垂直温度梯度特征及其成因分析[J].高原气象, 37(2): 333-348.DOI: 10.7522/j.issn.1000-0534.2017.00057.
[55]丁旭, 赖欣, 范广洲, 等, 2018.再分析土壤温湿度资料在青藏高原地区适用性的分析[J].高原气象, 37(3): 626-641.DOI: 10. 7522/j.issn.1000-0534.2017.00060.
[56]段安民, 肖志祥, 王子谦, 2018.青藏高原冬春积雪和地表热源影响亚洲夏季风的研究进展[J].大气科学, 42 (4): 755-766.
[57]段思汝, 2016.青藏高原上空温度变化特征及其与高原季风的关系研究[D].成都: 成都信息工程大学, 1-53.
[58]段思汝, 范广洲, 华维, 等, 2015.1979~2013年青藏高原上空温度变化特征[J].成都信息工程学院学报, 30(6): 586-592.
[59]范广洲, 程国栋, 2002.影响青藏高原植被生理过程与大气CO2浓度及气候变化的相互作用[J].大气科学, 27(4): 509-518.
[60]范广洲, 周定文, 刘雅勤, 等, 2007.青藏高原冬季NDVI变化与我国夏季降水的关系[J].自然科学进展, 17(12): 1657-1664.
[61]韩炳宏, 周秉荣, 颜玉倩, 等, 2019.2000 -2018年间青藏高原植被覆盖变化及其与气候因素的关系分析[J].草地学报, 27(6): 196-203.
[62]胡媛媛, 仲雷, 马耀明, 等, 2018.青藏高原典型下垫面地表能量通量的模型估算与验证[J].高原气象, 37(6): 1499-1510.DOI: 10.7522/j.issn.1000-0534.2018.00045.
[63]华维, 范广洲, 陈权亮, 等, 2010.改则地区气候变化对植被生理过程的影响及反馈效应的模拟研究[J].高原气象, 29(4): 875-883.
[64]华维, 范广洲, 周定文, 等, 2008.青藏高原植被变化与地表热源及中国降水关系的初步分析[J].中国科学(地球科学), 38(6): 732-740.
[65]解晋, 余晔, 刘川, 等, 2018.青藏高原地表感热通量变化特征及其对气候变化的响应[J].高原气象, 37(1): 28-42.DOI: 10. 7522/j.issn.1000-0534.2017.00019.
[66]李国平, 2007.青藏高原动力气象学[M].北京: 气象出版社, 76-77.
[67]李洪权, 2007.青藏高原植被变化特征及其对气候变化的影响[D].成都: 成都信息工程大学, 1-94.
[68]李洪权, 范广洲, 周定文, 等, 2008.青藏高原春季植被变化特征及其对夏季气温的影响[J].地理科学, 28(2): 259-265.
[69]李俊乐, 2015.高原夏季风与南海夏季风的关系研究[D].成都: 成都信息工程大学, 1-49.
[70]李学敏, 周定文, 范广洲, 等, 2008.青藏高原冬季 NDVI 与西南地区夏季气温的滞后关系[J].应用气象学报, 19(2): 161-170.
[71]梁玲, 卓嘎, 2011.植被退化对青藏高原冬夏季气候影响的模拟研究[J].高原山地气象研究, 31(3): 1-7.
[72]刘火霖, 胡泽勇, 程思, 等, 2016.基于Noah-LSM 模式和CoLM 模式的青藏高原中部陆面过程模拟[J].冰川冻土, 38(6): 1501-1509.
[73]刘军会, 高吉喜, 王文杰, 2013.青藏高原植被覆盖变化及其与气候变化的关系[J].山地学报, 31(2): 234-242.
[74]刘晓东, 田良, 韦志刚, 1994.青藏高原地表反射率变化对东亚夏季风影响的数值试验[J].高原气象, 13(4): 468-472.
[75]刘雅勤, 范广洲, 周定文, 等, 2007.青藏高原冬、 春植被归一化指数变化特征及其与高原夏季降水的联系[J].气象学报, 65(6): 659-667.
[76]刘振元, 张杰, 陈立, 2018.青藏高原植被退化对高原及周边地区大气环流的影响[J].生态学报, 38(1): 132-142.
[77]罗江鑫, 吕世华, 王婷, 等, 2020.青藏高原积雪变化特征及其对土壤水热传输的影响[J].高原气象, 39(6): 1144-1154.DOI: 10.7522/j.issn.1000-0534.2019.00143.
[78]吕建华, 季劲钧, 2002.青藏高原大气-植被相互作用的模拟试验Ⅰ.物理通量和参数[J].大气科学, 26(1): 111-126.
[79]马耀明, 胡泽勇, 田立德, 等, 2014.青藏高原气候系统变化及其对东亚区域的影响与机制研究进展[J].地球科学进展, 29(2): 207-215.
[80]马耀明, 2020.青藏高原地气相互作用过程高分率(逐小时)综合观测数据集[DS].国家青藏高原科学数据中心.DOI: 10.11888/Meteoro.tpdc.270910.CSRT: 18406.11.Meteroro.tpdc.270910.
[81]彭飞, 孙国栋, 2017.1982~1999年中国地区叶面积指数变化及其与气候变化的关系[J].气候与环境研究, 22 (2): 162-176.
[82]任宏昌, 史学丽, 张祖强, 2014.2003-2009年中国地区叶面积指数变化特征分析[J].气象科学, 34(2): 171-178.
[83]苏彦入, 吕世华, 范广洲, 2018.青藏高原夏季大气边界层高度与地表能量输送变化特征分析[J], 高原气象, 37(6): 1470-1485.DOI: 10.7522/j.issn.1000-0534.2018.00040.
[84]孙颖, 丁一汇, 2002.青藏高原热源异常对1999 年东亚夏季风异常活动的影响[J].大气科学, 26(6): 817-828.
[85]汤懋苍, 1995.高原季风的年代际振荡及其原因探讨[J].气象科学, 15(4): 64-68.
[86]王倩茹, 范广洲, 赖欣, 等, 2018.西藏那曲地区一次霰过程的大气边界层特征分析[J].气象, 44(3): 396-407.
[87]王涛, 赵元真, 王慧, 等, 2020.基于GIMMSNDVI的青藏高原植被指数时空变化及其气温降水响应[J].冰川冻土, 42(2): 641-652.
[88]王婷, 李照国, 吕世华, 等, 2019.青藏高原积雪对陆面过程热量输送的影响研究[J].高原气象, 38(5): 920-934.DOI: 10.7522/j.issn.1000-0534.2019.00026.
[89]王学佳, 杨梅学, 万国宁, 2013.近60年青藏高原地区地面感热通量的时空演变特征[J].高原气象, 32(6): 1557-1567.DOI: 10.7522/j.issn.1000-0534.2012.00151.
[90]王奕丹, 胡泽勇, 孙根厚, 等, 2019.高原季风特征及其与东亚夏季风关系的研究[J].高原气象, 38(3): 518-527.DOI: 10.7522/j.issn.1000-0534.2019.00025.
[91]吴国雄, 李伟平, 郭华, 等, 1997.青藏高原感热气泵和亚洲夏季风[C]//叶笃正编著.赵九章纪念文集[M].北京: 科学出版社, 116-126.
[92]吴国雄, 刘屹岷, 何编, 等, 2018.青藏高原感热气泵影响亚洲夏季风的机制[J].大气科学, 42(3): 488-504.
[93]徐祥德, 赵天良, 施晓晖, 等, 2015.青藏高原热力强迫对中国东部降水和水汽输送的调制作用[J].气象学报, 73(1): 20-35.
[94]许洁, 陈惠玲, 商沙沙, 等, 2020.2000 -2014年青藏高原植被净初级生产力时空变化及对气候变化的响应[J].干旱区地理, 43(3): 39-48.
[95]杨丽薇, 高晓清, 惠小英, 等, 2017a.青藏高原中部聂荣亚寒带半干旱草地近地层湍流特征研究[J].高原气象, 36(4): 875-885.DOI: 10.7522/j.issn.1000-0534.2016.00089.
[96]杨丽薇, 高晓清, 惠小英, 等, 2017b.青藏高原中部聂荣半干旱草地夏季近地层能量平衡与输送分析[J].气候与环境研究, 22 (3): 335-345.
[97]杨潇, 郭兵, 韩保民, 等, 2019.青藏高原NPP时空演变格局及其驱动机制分析[J].长江流域资源与环境, 28(12): 246-258.
[98]姚闯, 吕世华, 李照国, 等, 2020.黄河源区积雪对冻土水热过程影响的数值模拟[J].高原气象, 39(6): 1167-1180.DOI: 10. 7522/j.issn.1000-0534.2019.00128.
[99]姚闯, 吕世华, 王婷, 2019.黄河源区多、 少雪年土壤冻融特征分析[J].高原气象, 38(3): 474-483.DOI: 10.7522/j.issn.1000-0534.2018.00142.
[100]姚檀栋, 秦大河, 沈永平, 等, 2013.青藏高原冰冻圈变化及其对区域水循环和生态条件的影响[J].自然杂志, 35(3): 179-186.
[101]袁源, 赖欣, 巩远发, 等, 2019.CLM4.5模式对青藏高原土壤湿度的数值模拟及评估[J].大气科学, 43(3): 676-690.
[102]张晨, 韩佳芮, 李聪, 等, 2012.青藏高原对东亚夏季风影响的数值模拟[J].地球物理学进展, 27(6): 2322-2334.
[103]张菁, 2016.南亚高压和高原季风的关系研究[D].成都: 成都信息工程大学, 1-49.
[104]张菁, 范广洲, 赖欣, 等, 2017.南亚高压上下高原时间及其与高原季风建立早晚的关系[J].气象科学, 37(1): 30-40.
[105]张少波, 陈玉春, 吕世华, 等, 2013.青藏高原植被变化对中国东部夏季降水影响的模拟研究[J].高原气象, 32(5): 1236-1245.DOI: 10.7522/j.issn.1000-0534.2012.00119.
[106]张懿, 文小航, 王少影, 等, 2019.玛曲高寒草甸夏季近地层微气象和CO2通量特征分析[J].冰川冻土, 41(1): 54-63.
[107]赵平, 陈隆勋, 2001.35年来青藏高原大气热源气候特征及其与中国降水的关系[J].中国科学(地球科学), 31(4): 327-332.
[108]赵倩倩, 张京朋, 赵天保, 等, 2021.2000 年以来中国区域植被变化及其对气候变化的响应[J].高原气象, 40(2): 292-301.DOI: 10.7522/j.issn.1000-0534.2020.00025.
[109]钟珊珊, 何金海, 管兆勇, 等, 2009.1961 -2001年青藏高原大气热源的气候特征[J].气象学报, 67(3): 407-416.
[110]周懿, 范广洲, 华维, 等, 2015.高原季风的分布特征及其指数对比分析[J].高原气象, 34(6): 1517-1530.DOI: 10.7522/j.issn. 1000-0534.2014.00111.
[111]朱丽华, 范广州, 华维.2015.全球变暖背景下青藏高原夏季气温在对流层上下反相变化及其与降水和环流的关系[J].大气科学, 39 (6): 1250-1262.
[112]朱伊, 范广洲, 华维, 王倩茹, 2018.1981 -2015年青藏高原地表温度的时空变化特征分析[J].西南大学学报(自然科学版), 40(11): 127-140.
[113]竺夏英, 刘屹岷, 吴国雄, 2012.夏季青藏高原多种地表感热通量资料的评估[J].中国科学(地球科学), 42(7): 1104-1112.
[114]卓嘎, 陈思蓉, 周兵, 2018.青藏高原植被覆盖时空变化及其对气候因子的响应[J].生态学报, 38(9): 3208-3218.
文章导航

/