论文

次季节波动对青藏高原及其下游东亚季风区降水的影响

  • 杨琳韵 ,
  • 王淑瑜 ,
  • 符淙斌
展开
  • 中国气象科学研究院灾害天气国家重点实验室,北京 100081;南京大学大气科学学院中国气象局-南京大学气候预测研究联合实验室,江苏 南京 210023

收稿日期: 2021-03-01

  修回日期: 2021-06-09

  网络出版日期: 2021-12-28

基金资助

国家重点研发计划项目(2017YFA0603803)

The Review of the Influence of Sub-Seasonal Oscillation on Precipitation over the Qinghai-Xizang Tibetan Plateau and its Downstream East Asian Monsoon Region

  • YANG Linyun ,
  • WANG Shuyu ,
  • FU Congbin
Expand
  • State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China;CMA-NJU Joint Laboratory for Climate Prediction Studies, School of atmospheric science, Nanjing University, Nanjing 210023, Jiangsu, China

Received date: 2021-03-01

  Revised date: 2021-06-09

  Online published: 2021-12-28

摘要

影响青藏高原及其下游季风区的次季节波动对我国乃至亚洲地区的洪涝灾害起着不容忽视的作用。本文回顾了近40年来在青藏高原及下游东亚季风区的次季节降水方面取得的进展, 主要从影响降水的次季节尺度波动的特征、 来源和传播机制对研究成果进行了归纳。回顾表明, 青藏高原及下游东亚季风区的降水主要受到来自欧亚大陆及孟加拉湾-南海地区30~60天及准双周次季节波动的强烈影响, 同时高原次季节波动能够直接与间接地影响下游季风区降水。本文有助于系统理解高原及下游东亚季风区次季节大气振荡及降水, 并基于现有研究提出了该领域值得进一步研究的重点和方向, 具有一定的科学意义和参考价值。

本文引用格式

杨琳韵 , 王淑瑜 , 符淙斌 . 次季节波动对青藏高原及其下游东亚季风区降水的影响[J]. 高原气象, 2021 , 40(6) : 1432 -1442 . DOI: 10.7522/j.issn.1000-0534.2021.zk007

Abstract

The sub-seasonal oscillation affecting the Qinghai-Xizang (Tibetan) Plateau and its downstream plays an important role in the drought and flood disasters in China and Asia.This paper reviews the progress of sub-seasonal precipitation over the Qinghai-Xizang (Tibetan) Plateau and its downstream East Asian monsoon region in the past 40 years, mainly focusing on the characteristics, origin, propagation and underlying mechanism of the related oscillations.The review shows that the 30~60 day and quasi-biweekly oscillations from the Eurasian continent and the Bay of Bengal-South China Sea region can influence the precipitation over the Qinghai-Xizang (Tibetan) Plateau and the downstream East Asian monsoon region significantly.Also, the sub-seasonal oscillation over the Qinghai-Xizang (Tibetan) Plateau has both direct and indirect impacts on the precipitation on the middle and lower reaches of the Yangtze River.This paper can not only excite the understanding of the sub-seasonal atmospheric oscillation and precipitation over the plateau and its downstream East Asian monsoon region, but also propose the future prospects in this field, which can throw some light on the investigation of sub-seasonal oscillations over East Asia.

参考文献

[1]ChenJ P, WenZ P, WuR G, alet, 2015.Influences of northward propagating 25-90-day and quasi-biweekly oscillations on eastern China summer rainfall[J].Climate Dynamics, 45(1): 105-124.DOI: 10.1007/s00382-014-2334-y.
[2]ChenL X, ZhuC W, WenW, alet, 2001.Analysis of the characteristics of 30-60 days low-frequency oscillation over Asia during 1998 SCSMEX[J].Advances in Atmospheric Sciences, 18(4): 623-638.DOI: 10.1007/s00376-001-0050-0.
[3]ChenT C, ChenJ M, 1993.The 10-20-day mode of the 1979 Indian monsoon: Its relation with the time variation of monsoon rainfall[J].Monthly Weather Review, 121(9): 2465-2482.DOI: 10. 1175/1520-0493(1993)1212.0.CO; 2.
[4]FujinamiH, YasunariT, 2004.Submonthly variability of convection and circulation over and around the Tibetan Plateau during the boreal summer[J].Journal of the Meteorological Society of Japan.Ser.II, 82(6): 1545-1564.DOI: 10.2151/jmsj.82.1545.
[5]FujinamiH, YasunariT, 2009.The effects of midlatitude waves over and around the Tibetan Plateau on submonthly variability of the East Asian summer monsoon[J].Monthly Weather Review, 137(7): 2286-2304.DOI: 10.1175/2009MWR2826.1.
[6]GeJ, YouQ L, ZhangY Q, 2019.Effect of Tibetan Plateau heating on summer extreme precipitation in eastern China[J].Atmospheric Research, 218: 364-371.DOI: 10.1016/j.atmosres. 2018. 12.018.
[7]HongJ L, LiuY M, 2012.Contrasts of atmospheric circulation and associated tropical convection between Huaihe River Valley and Yangtze River Valley Mei-yu flooding[J].Advances in Atmospheric Sciences, 29(4): 755-768.DOI: 10.1007/s00376-012-1217-6.
[8]HuW T, DuanA M, LiY, alet, 2016.The intraseasonal oscillation of eastern Tibetan Plateau precipitation in response to the summer Eurasian wave train[J].Journal of Climate, 29(20): 7215-7230.DOI: 10.1175/JCLI-D-15-0620.1.
[9]JiangX W, TingM, 2019.Intraseasonal variability of rainfall and its effect on interannual variability across the Indian subcontinent and the Tibetan Plateau[J].Journal of Climate, 32(8): 2227-2245.DOI: 10.1175/JCLI-D-18-0319.1.
[10]KrishnamurtiT N, ArdanuyP, 1980.The 10 to 20‐day westward propagating mode and breaks in the monsoons[J].Tellus, 32(1): 15-26.DOI: 10.1111/j.2153-3490.1980.tb01717.x.
[11]LiC Y, LiG L, 1997.Evolution of intraseasonal oscillation over the tropical western Pacific/South china sea and its effect to the summer precipitation in Southern China[J].Advances in Atmospheric Sciences (2): 123-131.
[12]LiL, ZhangR H, WenM, alet, 2018.Modulation of the intensity of nascent Tibetan Plateau vortices by atmospheric quasi-biweekly oscillation[J].Advances in Atmospheric Sciences, 35(11): 1347-1361.DOI: 10.1007/s00376-018-8057-y.
[13]LiuF, OuyangY, WangB, alet, 2020.Seasonal evolution of the intraseasonal variability of China summer precipitation[J].Climate Dynamics, 54(11): 4641-4655.DOI: 10.1007/s00382-020-05251-0.
[14]LiuH, LiuX D, DongB W, 2017.Intraseasonal variability of winter precipitation over central Asia and the western Tibetan Plateau from 1979 to 2013 and its relationship with the North Atlantic Oscillation[J].Dynamics of Atmospheres and Oceans, 79: 31-42.DOI: 10.1016/j.dynatmoce.2017.07.001.
[15]MaddenR A, JulianP R, 1972.Description of global-scale circulation cells in the tropics with a 40-50-day period[J].Journal of Atmospheric Sciences, 29(6): 1109-1123.DOI: 10.1175/1520-0469(1972)0292.0.CO; 2.
[16]MaoJ Y, ChanJ C L, 2005.Intraseasonal variability of the South China Sea summer monsoon[J].Journal of Climate, 18(13): 2388-2402.DOI: 10.1175/JCLI3395.1
[17]MaoJ Y, SunZ, WuG X, 2010.20-50-day oscillation of summer Yangtze rainfall in response to intraseasonal variations in the subtropical high over the western North Pacific and South China Sea[J].Climate Dynamics, 34(5): 747-761.DOI: 10.1007/s00382-009-0628-2.
[18]MaoJ Y, WuG X, 2006.Intraseasonal variations of the Yangtze rainfall and its related atmospheric circulation features during the 1991 summer[J].Climate Dynamics, 27(7/8): 815-830.DOI: 10.1007/s00382-006-0164-2.
[19]NittaT, 1983.Observational study of heat sources over the eastern Tibetan Plateau during the summer monsoon[J].Journal of the Meteorological Society of Japan.Ser.II, 61(4): 590-605.DOI: 10.2151/jmsj1965.61.4_590.
[20]OuyangY, LiuF, 2020.Intraseasonal variability of summer monsoon rainfall over the lower reaches of the Yangtze River basin[J].Atmospheric and Oceanic Science Letters, 13(4): 323-329.DOI: 10.1080/16742834.2020.1741322.
[21]ParkH S, LintnerB R, BoosW R, alet, 2015.The effect of midlatitude transient eddies on monsoonal southerlies over eastern China[J].Journal of Climate, 28(21): 8450-8465.DOI: 10.1175/jcli-d-15-0133.1.
[22]SongL, WuR G, AnL, 2019.Different sources of 10-to 30-day intraseasonal variations of autumn snow over western and eastern Tibetan Plateau[J].Geophysical Research Letters, 46(15): 9118-9125.DOI: 10.1029/2019GL083852.
[23]WangM R, DuanA M, 2015.Quasi-Biweekly Oscillation over the Tibetan Plateau and Its Link with the Asian Summer Monsoon[J].Journal of Climate, 28(12): 4921-4940.DOI: 10.1175/JCLI-D-14-00658.1.
[24]WangM R, WangJ, DuanA M, 2017.Propagation and mechanisms of the quasi-biweekly oscillation over the Asian summer monsoon region[J].Journal of Meteorological Research, 31(2): 321-335.DOI: 10.1007/s13351-017-6131-5.
[25]YangH, LiC Y, 2003.The Relation between atmospheric intraseasonal oscillation and summer severe flood and drought in the Changjiang-Huaihe River Basin[J].Advances in Atmospheric Sciences, 20(4): 540-553.
[26]YangJ, BaoQ, WangB, alet, 2017.Characterizing two types of transient intraseasonal oscillations in the Eastern Tibetan Plateau summer rainfall[J].Climate Dynamics, 48(5/6): 1749-1768.DOI: 10.1007/s00382-016-3170-z.
[27]YangJ, WangB, WangB, alet, 2010.Biweekly and 21-30-day variations of the subtropical summer monsoon rainfall over the lower reach of the Yangtze River basin[J].Journal of Climate, 23(5): 1146-1159.DOI: 10.1175/2009JCLI3005.1.
[28]YangS Y, LiT, 2017.Causes of intraseasonal diabatic heating variability over and near the Tibetan Plateau in boreal summer[J].Climate Dynamics, 49(7/8): 2385-2406.DOI: 10.1007/s00382-016-3463-2.
[29]YinZ C, ZhuL J, YuanD M, 2014.The north-south anti-phase distribution of rainfall in Meiyu Periods and its relationship with quasi-biweekly oscillation in the atmosphere[J].Journal of Tropical Meteorology, 20(2): 154.DOI: 10.16555/j.1006-8775.2014. 02.007.
[30]ZhangG S, MaoJ Y, WuG X, alet, 2020.Impact of potential vorticity anomalies around the eastern Tibetan Plateau on quasi-biweekly oscillations of summer rainfall within and south of the Yangtze Basin in 2016[J].Climate Dynamics, 56: 813-835.DOI: 10. 1007/s00382-020-05505-x.
[31]ZhangP F, LiG P, FuX H, alet, 2014.Clustering of Tibetan Plateau vortices by 10-30-day intraseasonal oscillation[J].Monthly Weather Review, 142(1): 290-300.DOI: 10.1175/MWR-D-13-00137.1.
[32]ZhangY, ZhouW, ChowE C H, alet, 2019.Delayed impacts of the IOD: cross-seasonal relationships between the IOD, Tibetan Plateau snow, and summer precipitation over the Yangtze-Huaihe River region[J].Climate Dynamics, 53(7): 4077-4093.DOI: 10.1007/s00382-019-04774-5.
[33]ZhouL, MurtuguddeR, 2014.Impact of northward-propagating intraseasonal variability on the onset of Indian summer monsoon[J].Journal of Climate, 2014, 27(1): 126-139.DOI: 10.1175/jcli-d-13-00214.1.
[34]陈桂兴, 黎伟标, 袁卓建, 等, 2004.1998年长江流域洪水期大气季节内振荡特征及机理研究[J].中国科学(地球科学), 34(6): 562-572.DOI: 10.3321/j.issn: 1006-9267.2004.06.009.
[35]巩远发, 许美玲, 何金海, 等, 2006.夏季青藏高原东部降水变化与副热带高压带活动的研究[J].气象学报, 64(1): 90-99.DOI: 10.11676/qxxb2006.009.
[36]贺懿华, 李才媛, 金琪, 等, 2006.夏季青藏高原 TBB 低频振荡及其与华中地区旱涝的关系[J].高原气象, 25(4): 658-664.
[37]琚建华, 赵尔旭, 2005.东亚夏季风区的低频振荡对长江中下游旱涝的影响[J].热带气象学报, 21(2): 163-171.DOI: 10.3969/j.issn.1004-4965.2005.02.006.
[38]李崇银, 1991.30-60天大气振荡的全球特征[J].大气科学, 15(3): 66-76.DOI: 10.3878/j.issn.1006-9895.1991.03.10.
[39]李崇银, 1992.华北地区汛期降水的一个分析研究[J].气象学报, 50(1): 41-49.DOI: 10.11676/qxxb1992.005.
[40]李崇银, 杨辉, 2003.大气季节内振荡的活动与江淮流域夏季旱涝[J].湖泊科学, 15(增刊): 16-22.DOI: 10.18307/2003.sup02.
[41]李健颖, 毛江玉, 2019.亚洲夏季风 30~60 天季节内振荡对中国东部地区持续性极端降水的影响[J].大气科学, 43(4): 796-812.DOI: 10.3878/j.issn.1006-9895.1809.18145.
[42]刘式适, 柏晶瑜, 徐祥德, 等, 2000.青藏高原大地形的动力, 热力作用与低频振荡[J].应用气象学报, 11(3): 312-321.DOI: 10.3969/j.issn.1001-7313.2000.03.008.
[43]刘恬, 高晓清, 杨丽薇, 等, 2020.近36年江淮地区浅层地温变化的多尺度分析[J].高原气象, 39(2): 147-156.DOI: 10.7522/j.issn.1000-0534.2019.00038.
[44]刘炜, 周顺武, 王美蓉, 等, 2016.1979 -2008 年夏季青藏高原东南部降水的低频振荡统计特征[J].干旱气象, 34(4): 631-639.DOI: 10.11755/j.issn.1006-7639(2016)-04-0631.
[45]刘炜, 周顺武, 智海, 2014.1998 年夏季青藏高原东南部降水 30~60 d 低频振荡特征[J].气象, 40(5): 530-540.DOI: 10.7519/j.issn.1000-0526.2014.05.002.
[46]罗会邦, 陈蓉, 俞新南, 1995.夏半年青藏高原东部大气热源时间变化特征[J].气象科学, 15(4): 84-93.
[47]罗菁, 李丽平, 孙金花, 等, 2018.1998年和2010年夏季长江流域降水低频变化及水汽输送特征对比分析[J].气候变化研究快报, 7(4): 232-244.DOI: 10.12677/CCRL.2018.74026.
[48]祁莉, 王晓芳, 何金海, 等, 2014.前期西太平洋暖池热含量异常影响长江中下游夏季降水的可能途经[J].地球物理学报, 57(6): 1769-1781.
[49]万超, 范广洲, 华维, 等, 2015.青藏高原夏季风和南海夏季风低频振荡的关系[J].高原气象, 34(2): 318-326.DOI: 10.7522/j.issn.1000-0534.2014.00020.
[50]王文, 孙畅, 蔡晓军, 等, 2016.南亚高压低频振荡与长江中下游地区旱涝的关系[J].地球科学进展, 31(5): 529-541.DOI: 10. 11867/j.issn.1001-8166.2016.05.0529.
[51]王跃男, 陈隆勋, 何金海, 等, 2009.夏季青藏高原热源低频振荡对我国东部降水的影响[J].应用气象学报, 20(4): 419-427.DOI: 10.11898/1001-7313.20090405.
[52]王遵娅, 丁一汇, 2008.夏季长江中下游旱涝年季节内振荡气候特征[J].应用气象学报, 19(6): 710-715.DOI: 10.11898/1001-7313.20080610.
[53]魏晓雯, 梁萍, 何金海, 等, 2015.汛期强降水过程与月内低频降水的联系及其可能机制[J].高原气象, 34(3): 722-731.DOI: 10.7522/j.issn.1000-0534.2013.00184.
[54]吴建金, 2012.江淮流域持续性暴雨前期大气低频振荡特征[C].沈阳: 第 29 届中国气象学会年会, 1-19.
[55]夏芸, 管兆勇, 王黎娟, 2008.2003 年江淮流域强降水过程与 30~70 d 天低频振荡的联系[J].南京气象学院学报, 31(1): 33-41.DOI: 10.3969/j.issn.1674-7097.2008.01.005.
[56]徐国强, 朱乾根, 2000.1998 年青藏高原大气低频振荡的结构特征分析[J].南京气象学院学报, 23(4): 46-54.DOI: 10.3969/j.issn.1674-7097.2000.04.006.
[57]徐祥德, 陈联寿, 2006.青藏高原大气科学试验研究进展[J].应用气象学报, 17(6): 756-772.DOI: 10.11898/1001-7313.20060613.
[58]许建伟, 高艳红, 彭保发, 等, 2020.1979-2016年青藏高原降水的变化特征及成因分析[J].高原气象, 39(2): 24-34.DOI: 10. 7522/j.issn.1000-0534.2019.00029.
[59]许乐心, 张人禾, 齐艳军, 2017.长江中游和下游夏季降水季节内振荡的差异 [J].大气科学, 41(6): 1125-1140.DOI: 10.3878/j.issn.1006-9895.1703.17112.
[60]杨蓉, 巩远发, 谢启玉,等, 2015.1997-1998 年青藏高原大气低频振荡及对降水影响[J].应用气象学报, 26(4): 397-408.DOI: 10.11898/1001-7313.20150402.
[61]张芳丽, 李国平, 罗潇, 2020.四川盆地东北部一次突发性暴雨事件的影响系统分析[J].高原气象, 39(2): 111-122. DOI: 10. 7522/j.issn.1000-0534.2019.00080.
[62]张庆云, 陶诗言, 张顺利, 2003.夏季长江流域暴雨洪涝灾害的天气气候条件[J].大气科学, 27(6): 1018-1030.
[63]张秀丽, 郭品文, 何金, 2002.1991年夏季长江中下游降水和风场的低频振荡特征分析[J].大气科学学报, 25(3): 388-394.DOI: 10.3969/j.issn.1674-7097.2002.03.014.
[64]张瑛, 陈隆勋, 何金海, 等, 2008.1998 年夏季亚洲地区低频大气环流的特征及其与长江中下游降水的关系[J].气象学报, 66(4): 577-591.DOI: 10.11676/qxxb2008.055.
[65]章基嘉, 彭永清, 王鼎良, 1984.夏季青藏高原各热源分量的时频特征及高度场对它们的响应//青藏高原气象科学实验文集(一)[M].北京: 科学出版社, 182-192.
[66]赵平, 2001.35年来青藏高原大气热源气候特征及其与中国降水的关系[J].中国科学 (地球科学), 31(4): 327-332.DOI: 10. 1360/zd2001-31-4-327.
[67]周兵, 何金海, 徐海明, 2000.青藏高原气象要素场低频特征及其与夏季区域降水的关系[J].南京气象学院学报, 23(1): 93-100.DOI: 10.3969/j.issn.1674-7097.2000.01.015.
文章导航

/