青藏高原西部, 尤其是西南部阿里地区异常高的古湖岸线揭示出, 这一区域可能存在中全新世的异常高降水中心。基于此, 本文利用WorldClim数据集资料对中全新世和现代降水进行对比, 并使用ERA5数据初步探讨了出现异常高降水的可能机制。结果显示, 青藏高原西部中全新世降水远比现代高, 尤其是西南部出现了相对的高降水中心。现代青藏高原西南部降水增加时, 对应印度夏季风增强, 印度次大陆低空对流层低压中心增强, 深对流的发生更为频繁, 导致向高原西南部输送的水汽增强。与此同时, 印度北部降水增加导致的凝结潜热释放增加会使南亚高压增强并向西北方向移动, 导致青藏高原西南部上升运动加强, 从而导致青藏高原西南部降水增加。相对于现代, 中全新世印度季风较强, 位于印度次大陆低空的低压可能更强, 印度北部的凝结潜热释放也会加强, 进而导致中全新世青藏高原西南部出现异常高降水。
The ancient lake shorelines in the western Qinghai-Xizang (Tibet) Plateau reveals that there may be more precipitation than present day(PD)during the mid-Holocene(MH), especially in the Ngari.Thus, we compared the precipitation between the MH and the PD using the high-resolution precipitation of the WorldClim dataset and then applied the ERA5 dataset to explore the underlying mechanisms of the precipitation over the southwestern Qinghai-Xizang (Tibet) Plateau.The results show that precipitation in the MH over the western Qinghai-Xizang (Tibet) Plateau was much higher than that in the PD, with the strongest precipitation occurring over the southwestern Qinghai-Xizang (Tibet) Plateau.When the precipitation over the southwestern Qinghai-Xizang (Tibet) Plateau enhanced in the PD, the Indian summer monsoon(ISM)also strengthened.The enhanced ISM could strengthen low pressure in the lower troposphere and deep convection over the Indian subcontinent.These could increase the water vapor transport to the southwestern Qinghai-Xizang (Tibet) Plateau.Meanwhile, the increased condensation latent heat released by the increased precipitation over northern India enhanced and northwestward moved the South Asian High, leading to the increased ascending motion and precipitation over the southwestern Qinghai-Xizang (Tibet) Plateau in the PD.Compared with PD, the ISM during the MH was stronger, and the low pressure over the Indian subcontinent may be stronger.The related condensation latent heat may also increase, which could further result in the increased precipitation over the southwestern Qinghai-Xizang (Tibet) Plateau during the MH.
[1]AliverniniM, LaiZ P, FrenzelP, alet, 2018.Late quaternary lake level changes of Taro Co and neighbouring lakes, Southwestern Tibetan Plateau, based on OSL dating and ostracod analysis[J].Global and Planetary Change, 166: 1-18.
[2]AnW L, HouS G, ZhangQ, alet, 2017.Enhanced recent local moisture recycling on the northwestern Tibetan Plateau deduced from ice core deuterium excess records[J].Journal of Geophysical Research: Atmospheres, 122(23): 12541-12556.
[3]AnZ S, E.KJohn, WarrenL.P, et al, 2001.Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since late miocene times[J].Nature, 411(6833): 62-66.
[4]ChenF H, ChenX M, ChenJ H, alet, 2014.Holocene vegetation history, precipitation changes and Indian summer monsoon evolution documented from sediments of Xingyun Lake, south-west China[J].Journal of Quaternary Science, 29(7): 661-674.
[5]ChenF H, ChenJ H, HuangW, alet, 2019.Westerlies Asia and monsoonal Asia: Spatiotemporal differences in climate change and possible mechanisms on decadal to sub-orbital timescales[J].Earth-Science Reviews, 192: 337-354.
[6]ChenF H, ZhangJ F, LiuJ B, alet, 2020.Climate change, vegetation history, and landscape responses on the Tibetan Plateau during the holocene: A comprehensive review[J].Quaternary Science Reviews, 243: 106444.
[7]ChenY W, ZongY Q, LiB, alet, 2013.Shrinking lakes in Tibet linked to the weakening Asian monsoon in the past 8.2ka[J].Quaternary Research (United States), 80(2): 189-198.
[8]Cohen K M, Finney S C, Gibbard P L, et al, 2013(updated 2019/05).The ICS international chronostratigraphic chart[J].Episodes, 36: 199-204.
[9]CurioJ, MaussionF, SchererD, 2015.A 12-year high-resolution climatology of atmospheric water transport over the Tibetan Plateau[J].Earth System Dynamics, 6(1): 109-124.
[10]DongW H, LinY L, WrightJ S, alet, 2016.Summer rainfall over the southwestern Tibetan Plateau controlled by deep convection over the Indian subcontinent[J].Nature Communications, 7(1): 1-9.
[11]DongW H, LinY L, WrightJ S, alet, 2017.Indian monsoon low-pressure systems feed up-and-over moisture transport to the southwestern Tibetan Plateau[J].Journal of Geophysical Research: Atmospheres, 122(22): 12140-12151.
[12]Dupont-NivetG, KrijgsmanW, LangereisC G, alet, 2007.Tibetan Plateau aridification linked to global cooling at the eocene-oligocene transition[J].Nature, 445(7128): 635-638.
[13]DykoskiC A, EdwardsR L, ChengH, alet, 2005.A high-resolution, absolute-dated holocene and deglacial Asian monsoon record from Dongge Cave, China[J].Earth and Planetary Science Letters, 233(1/2): 71-86.
[14]FengL, ZhouT J, 2012.Water vapor transport for summer precipitation over the Tibetan Plateau: Multidata set analysis[J].Journal of Geophysical Research Atmospheres, 117(20): 20114.
[15]GaoY H, ChenF, JiangY S, 2020.Evaluation of a convection-permitting modeling of precipitation over the Tibetan Plateau and its influences on the simulation of snow-cover fraction[J].Journal of Hydrometeorology, 21(7): 1531-1548.
[16]HersbachH, BellB, BerrisfordP, alet, 2020.The ERA5 global reanalysis[J].Quarterly Journal of the Royal Meteorological Society, 146(730): 1999-2049.
[17]HijmansR J, CameronS E, ParraJ L, alet, 2005.Very high-resolution interpolated climate surfaces for global land areas[J].International Journal of Climatology, 25(15): 1965-1978.
[18]HouJ Z, D'AndreaW J, WangM D, alet, 2017.Influence of the Indian monsoon and the subtropical jet on climate change on the Tibetan Plateau since the late Pleistocene[J].Quaternary Science Reviews, 163: 84-94.
[19]HuangG, QuX, HuK M, 2011.The impact of the tropical Indian Ocean on South Asian high in boreal summer[J].Advances in Atmospheric Sciences, 28(2): 421-432.
[20]HudsonA M, QuadeJ, 2013.Long-term east-west asymmetry in monsoon rainfall on the Tibetan Plateau[J].Geology, 41(3): 351-354.
[21]HudsonA M, QuadeJ, HuthT E, alet, 2015.Lake level reconstruction for 12.8-2.3 ka of the Ngangla Ring Tso closed-basin lake system, southwest Tibetan Plateau[J].Quaternary Research (United States), 83(1): 66-79.
[22]HuthT, HudsonA M, QuadeJ, alet, 2015.Constraints on paleoclimate from 11.5 to 5.0 ka from shoreline dating and hydrologic budget modeling of Baqan Tso, southwestern Tibetan Plateau[J].Quaternary Research (United States), 83(1): 80-93.
[23]IbarraD E, EggerA E, WeaverK L, alet, 2014.Rise and fall of late pleistocene Pluvial Lakes in response to reduced evaporation and precipitation: Evidence from lake surprise, California[J].Geological Society of America Bulletin, 126(11/12): 1387-1415.
[24]ImmerzeelW W, LutzA F, AndradeM, alet, 2020.Importance and vulnerability of the world’s water towers[J].Nature, 577(7790): 364-369.
[25]JiangD B, TianZ P, LangX M, 2013.Mid-holocene net precipitation changes over China: Model-data comparison[J].Quaternary Science Reviews, 82: 104-120.
[26]JonellT N, AitchisonJ C, LiG, alet, 2020.Revisiting growth and decline of late quaternary Mega-Lakes across the south-central Tibetan Plateau[J].Quaternary Science Reviews, 248: 106475.
[27]KrishnamurthyV, AjayamohanR S, 2010.Composite structure of monsoon low pressure systems and its relation to Indian rainfall[J].Journal of Climate, 23(16): 4285-4305.
[28]KrishnamurtiT N, Bhalme1 H N, 1976.Oscillations of a monsoon system.Part I.Observational aspects[J].Journal of the Atmospheric Sciences, 33: 1937-1954.
[29]KutzbachJ E, PrellW L, RuddimanW F, 1993.Sensitivity of Eurasian climate to surface uplift of the Tibetan Plateau[J].Journal of Geology, 101(2): 177-190.
[30]LanC, ZhangY X, WangQ C, alet, 2013.Climate change on the northern Tibetan Plateau during 1957-2009: Spatial patterns and possible mechanisms[J].Journal of Climate, 26(1): 85-109.
[31]LauK M, KimK M, 2006.Observational relationships between Aerosol and Asian monsoon rainfall, and circulation[J].Geophysical Research Letters, 33(21): L21810.
[32]LeeJ, LiS H, AitchisonJ C, 2009.OSL dating of paleoshorelines at Lagkor Tso, western tibet[J].Quaternary Geochronology, 4(4): 335-343.
[33]LiQ, XueY K, 2010.Simulated impacts of land cover change on summer climate in the Tibetan Plateau[J].Environmental Research Letters, 5(1): 015102.
[34]MifflinM D, WheatM M, 1979.Pluvial Lakes and estimated Pluvial climates of Nevada[J].Nevada Bureau of Mines and Geology, 94: 57.
[35]MooleyD A, ParthasarathyB, 1984.Fluctuations in all-India summer monsoon rainfall during 1871-1978[J].Climatic Change, 6(3): 287-301.
[36]Otto-BliesnerB L, BraconnotP, HarrisonS P, alet, 2017.The PMIP4 contribution to CMIP6-Part 2: Two interglacials, scientific objective and experimental design for holocene and last interglacial simulations[J].Geoscientific Model Development, 10(11): 3979-4003.
[37]PolanskiS, RinkeA, DethloffK, alet, 2012.Simulation and comparison between mid-holocene and preindustrial Indian summer monsoon circulation using a regional climate model[J].The Open Atmospheric Science Journal, 6: 42-48.
[38]SchneiderS H, DickinsonR E, 1974.Climate modeling[J].Reviews of Geophysics, 12(3): 447-493.
[39]SchneiderU, BeckerA, FingerP, alet, 2020.GPCC full data monthly product version 2020 at 0.25°: Monthly land-surface precipitation from rain-gauges built on GTS-based and historical data[DB/OL].Global Precipitation Climatology Centre.DOI: 10.5676/DWD_GPCC/FD_M_V2020_025.
[40]ShiX H, KirbyE, FurlongK P, alet, 2017.Rapid and punctuated late holocene recession of Siling Co, central Tibet[J].Quaternary Science Reviews, 172: 15-31.
[41]SunJ, YangK, GuoW D, alet, 2020.Why has the inner Tibetan Plateau become wetter since the mid-1990s?[J].Journal of Climate, 33(19): 8507-8522.
[42]TierneyJ E, PoulsenC J, Monta?ezI P, alet, 2020.Past climates inform our future[J].Science, 370(6517): eaay3701.
[43]WangY, YangK, ZhouX, alet, 2019.The formation of a dry‐belt in the north side of central Himalaya Mountains[J].Geophysical Research Letters, 46(5): 2993-3000.
[44]WebsterP J, Maga?aV O, PalmerT N, alet, 1998.Monsoons: Processes, predictability, and the prospects for prediction[J].Journal of Geophysical Research: Oceans, 103(C7): 14451-14510.
[45]WeiW, ZhangR H, WenM, alet, 2015.Interannual variation of the South Asian High and its relation with Indian and East Asian summer monsoon rainfall[J].Journal of Climate, 28(7): 2623-2634.
[46]YaoT D, ThompsonL, YangW, alet, 2012.Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J].Nature Climate Change, 2(9): 663-667.
[47]YatagaiA, KamiguchiK, ArakawaO, alet, 2012.Aphrodite constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges[J].Bulletin of the American Meteorological Society, 93(9): 1401-1415.
[48]YuS Y, ColmanS M, LaiZ P, 2019.Late-quaternary history of ‘Great Lakes’ on the Tibetan Plateau and palaeoclimatic implications-A review[J].Boreas, 48(1): 1-19.
[49]ZhangC, TangQ H, ChenD L, 2017.Recent changes in the moisture source of precipitation over the Tibetan Plateau[J].Journal of Climate, 30(5): 1807-1819.
[50]ZhangC, TangQ H, ChenD L, alet, 2019a.Moisture source changes contributed to different precipitation changes over the northern and southern Tibetan Plateau[J].Journal of Hydrometeorology, 20(2): 217-229.
[51]ZhangF, ThapaS, ImmerzeelW, alet, 2019b.Water availability on the third pole: A review[J].Water Security, 7: 100033.
[52]ZhangG Q, YaoT D, XieH J, alet, 2020a.Response of Tibetan Plateau lakes to climate change: Trends, patterns, and mechanisms[J].Earth-Science Reviews, 208: 103269.
[53]ZhangS, ZhangJ F, ZhaoH, alet, 2020b.Spatiotemporal complexity of the “Greatest Lake Period” in the Tibetan Plateau[J].Science Bulletin, 65(16): 1317-1319.
[54]ZhangY Z, ZhangJ W, McGowanS, alet, 2021.Climatic and environmental change in the western Tibetan Plateau during the Holocene, recorded by lake sediments from Aweng Co[J].Quaternary Science Reviews, 259: 106889.
[55]康潆文, 巩远发, 2021.基于高分辨率OLR资料的青藏高原和南亚地区夏季对流日变化特征[J].高原气象, 40(3): 472-485.DOI: 10.7522/j.issn.1000-0534.2020.00105.
[56]马庆峰, 朱立平, 吕新苗, 等, 2014.花粉揭示的青藏高原西南部塔若错全新世以来植被与气候变化[J].科学通报, 59(26): 2631-2644.
[57]马耀明, 胡泽勇, 王宾宾, 等, 2021.青藏高原多圈层地气相互作用过程研究进展和回顾[J].高原气象, 40(6): 1-22.DOI: 10. 7522/j.issn.1000-0534.2021.zk006.
[58]许建伟, 高艳红, 彭保发, 等, 2020.1979-2016年青藏高原降水的变化特征及成因分析[J].高原气象, 39(2): 234-244.DOI: 10.7522/j.issn.1000-0534.2019.00029.
[59]杨伟愚, 叶笃正, 吴国雄, 1992.夏季青藏高原热力场和环流场的诊断分析 Ⅰ.盛夏高原西部地区的水汽状况[J].大气科学, 16(1): 41-51.
[60]陶诗言, 朱福康, 1964.夏季亚洲南部100毫巴流型的变化及其与西太平洋副热带高压进退的关系[J].气象学报, 34(4): 385-396.
[61]高登义, 2007.山地屏障与水汽通道综合作用初探——兼谈大香格里拉自然成因[J].高原气象, 26(6): 1305-1310.
[62]张镱锂, 刘林山, 李炳元, 等, 2021.青藏高原界线2021年版数据集[DB/OL].全球变化数据仓储电子杂志(中英文).[2021-05-25].https: //doi.org/10.3974/geodb.2021.07.10.V1.
[63]钟水新, 2020.地形对降水的影响机理及预报方法研究进展[J].高原气象, 39(5): 1122-1132.DOI: 10.7522/j.issn.1000-0534. 2019.00083.